temporal features learning from sentinel-2 data using
recurrent-convolutional neural network (r-cnn). Ap-
plied Sciences, 10(1):238.
Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard,
A. J., Banino, A., Denil, M., Goroshin, R., Sifre,
L., Kavukcuoglu, K., et al. (2016). Learning to
navigate in complex environments. arXiv preprint
arXiv:1611.03673.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M.
(2013). Playing atari with deep reinforcement learn-
ing. arXiv preprint arXiv:1312.5602.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fid-
jeland, A. K., Ostrovski, G., et al. (2015). Human-
level control through deep reinforcement learning.
Nature, 518(7540):529.
Mocanu, E., Mocanu, D. C., Nguyen, P. H., Liotta, A., Web-
ber, M. E., Gibescu, M., and Slootweg, J. G. (2018).
On-line building energy optimization using deep re-
inforcement learning. IEEE Transactions on Smart
Grid.
Mohanan, M. and Salgoankar, A. (2018). A survey of
robotic motion planning in dynamic environments.
Robotics and Autonomous Systems, 100:171–185.
Rigelsford, J. (2004). Introduction to autonomous mobile
robots. Industrial Robot: An International Journal.
Salvetti, F., Mazzia, V., Khaliq, A., and Chiaberge, M.
(2020). Multi-image super resolution of remotely
sensed images using residual attention deep neural
networks. Remote Sensing, 12(14):2207.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou,
I., Panneershelvam, V., Lanctot, M., et al. (2016).
Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484.
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D.,
Graepel, T., et al. (2018). A general reinforcement
learning algorithm that masters chess, shogi, and go
through self-play. Science, 362(6419):1140–1144.
Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. (2014). Deterministic policy gradient
algorithms. In Proceedings of the 31st International
Conference on International Conference on Machine
Learning - Volume 32, ICML’14, page I–387–I–395.
JMLR.org.
Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel,
P. (2016). Value iteration networks. In Advances in
Neural Information Processing Systems, pages 2154–
2162.
Yan, J., Tiberius, C., Bellusci, G., and Janssen, G. (2008).
Feasibility of gauss-newton method for indoor posi-
tioning. In 2008 IEEE/ION Position, Location and
Navigation Symposium, pages 660–670.
Zafari, F., Gkelias, A., and Leung, K. K. (2019). A survey
of indoor localization systems and technologies. IEEE
Communications Surveys & Tutorials.
Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-
Fei, L., and Farhadi, A. (2017). Target-driven visual
navigation in indoor scenes using deep reinforcement
learning. In 2017 IEEE international conference on
robotics and automation (ICRA), pages 3357–3364.
IEEE.
Indoor Point-to-Point Navigation with Deep Reinforcement Learning and Ultra-Wideband
47