and Artificial Intelligence (ICAART 2020), 2:860–
864.
Bottou, L. (2010). Large-scale machine learning with
stochastic gradient descent. In Proceedings of COMP-
STAT’2010, pages 177–186. Springer.
Kammoun, A., Hamidouche, W., Belghith, F., Nezan, J.-F.,
and Masmoudi, N. (2018). Hardware design and im-
plementation of adaptive multiple transforms for the
versatile video coding standard. IEEE Transactions
on Consumer Electronics, 64(4):424–432.
Lakshminarayanan, B., Roy, D. M., and Teh, Y. W. (2014).
Mondrian forests: Efficient online random forests. In
Advances in neural information processing systems,
pages 3140–3148.
Lee, T.-Y., Fan, Y.-H., Cheng, Y.-M., and Tsai, C.-C.
(2009). Hardware-software partitioning for embed-
ded multiprocessor fpga systems. International Jour-
nal of Innovative Computing, Information and Con-
trol, 5(10):3071–3083.
Lee, T.-Y., Fan, Y.-H., Cheng, Y.-M., Tsai, C.-C., and
Hsiao, R.-S. (2007). Enhancement of hardware-
software partition for embedded multiprocessor fpga
systems. In Third International Conference on In-
telligent Information Hiding and Multimedia Signal
Processing (IIH-MSP 2007), volume 1, pages 19–22.
IEEE.
Liang, N.-Y., Huang, G.-B., Saratchandran, P., and Sun-
dararajan, N. (2006). A fast and accurate online se-
quential learning algorithm for feedforward networks.
IEEE Transactions on neural networks, 17(6):1411–
1423.
Lin, T.-Y., Hung, Y.-T., and Chang, R.-G. (2006). Efficient
hardware/software partitioning approach for embed-
ded multiprocessor systems. In 2006 International
Symposium on VLSI Design, Automation and Test,
pages 1–4. IEEE.
Ouyang, A., Peng, X., Liu, J., and Sallam, A. (2017).
Hardware/software partitioning for heterogenous mp-
soc considering communication overhead. Interna-
tional Journal of Parallel Programming, 45(4):899–
922.
Polikar, R., Upda, L., Upda, S. S., and Honavar, V. (2001).
Learn++: An incremental learning algorithm for su-
pervised neural networks. IEEE transactions on sys-
tems, man, and cybernetics, part C (applications and
reviews), 31(4):497–508.
Shui-sheng, Z., Wei-wei, W., and Li-hua, Z. (2006). A new
technique for generalized learning vector quantization
algorithm. Image and Vision Computing, 24(7):649–
655.
Skliarova, I. and Sklyarov, V. (2019). Hardware/software
co-design. In FPGA-BASED Hardware Accelerators,
pages 213–241. Springer.
Wang, R., Hung, W. N., Yang, G., and Song, X. (2016). Un-
certainty model for configurable hardware/software
and resource partitioning. IEEE Transactions on Com-
puters, 65(10):3217–3223.
Wiem, B., Mowlaee, P., Aicha, B., et al. (2018). Unsuper-
vised single channel speech separation based on opti-
mized subspace separation. Speech Communication,
96:93–101.
Wijesundera, D., Prakash, A., Perera, T., Herath, K., and
Srikanthan, T. (2018). Wibheda: framework for
data dependency-aware multi-constrained hardware-
software partitioning in fpga-based socs for iot de-
vices. In 2018 IEEE 26th Annual International Sym-
posium on Field-Programmable Custom Computing
Machines (FCCM), pages 213–213. IEEE.
Yousuf, S. and Gordon-Ross, A. (2016). An automated
hardware/software co-design flow for partially recon-
figurable fpgas. In 2016 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pages 30–35.
IEEE.
Zhang Tao, Zhao Xin, A. X. Q. H. and Zhichun,
L. (2017). Using blind optimization algorithm
for hardware/software partitioning. IEEE Access,
5:1353–1362.
Zou, Y., Zhuang, Z., and Chen, H. (2004). Hw-sw parti-
tioning based on genetic algorithm. In Proceedings
of the 2004 Congress on Evolutionary Computation
(IEEE Cat. No. 04TH8753), volume 1, pages 628–
633. IEEE.
Incremental Learning for Real-time Partitioning for FPGA Applications
603