Koltun, V. (2017). CARLA: An Open Urban Driving
Simulator. arXiv:1711.03938 [cs].
Fremont, D. J., Dreossi, T., Ghosh, S., Yue, X.,
Sangiovanni-Vincentelli, A. L., and Seshia, S. A.
(2019). Scenic: A Language for Scenario Specifica-
tion and Scene Generation. Proceedings of the 40th
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation - PLDI 2019, pages
63–78.
Google (Last visited on Sept. 2020). Machine
learning workflow. https://cloud.google.com/ai-
platform/docs/ml-solutions-overview.
Hill, C., Bellamy, R., Erickson, T., and Burnett, M. (2016).
Trials and tribulations of developers of intelligent
systems: A field study. In 2016 IEEE Symposium
on Visual Languages and Human-Centric Computing
(VL/HCC), pages 162–170, Cambridge. IEEE.
Jackson, D. (2012). Software Abstractions: Logic, Lan-
guage, and Analysis. The MIT Press.
Jahic, B., Guelfi, N., and Ries, B. (2019). Software En-
gineering for Dataset Augmentation using Genera-
tive Adversarial Networks. In Proceedings of the
10th IEEE International Conference on Software En-
gineering and Service Science (ICSESS 2019), Bei-
jing, China. IEEE.
Jahic, B., Guelfi, N., and Ries, B. (2020). Specifying Key-
Properties to Improve the Recognition Skills of Neural
Networks. In Proc. of the 2020 European Symposium
on Software Engineering, Roma, Italy. ACM.
Khomh, F., Adams, B., Cheng, J., Fokaefs, M., and Anto-
niol, G. (2018). Software Engineering for Machine-
Learning Applications: The Road Ahead. IEEE Soft-
ware, 35(5):81–84.
Mathew, S., Danielle, D., and Tok, W. H. (2018). Deep
Learning with Azure - Building and Deploying Arti-
ficial Intelligence Solutions on the Microsoft AI Plat-
form. Apress.
Mellor, S. J., Balcer, M., and Jacoboson, I. (2002). Exe-
cutable UML: A Foundation for Model-Driven Archi-
tectures. Addison-Wesley Longman Publishing Co.,
Inc., USA.
Naur, P. and Randell, B. (1969). Software Engineering
Report of a conference sponsored by the NATO Sci-
ence Committee Garmisch Germany 7th-11th October
1968.
Object Management Group (2011). Business Process
Model and Notation (BPMN) v2.0. OMG Standard
Full Specification formal/2011-01-03.
Object Management Group (2017). Unified Modeling Lan-
guage: Superstructure (UML), v. 2.5.1. OMG Stan-
dard Full Specification formal/17-12-05.
Object Management Group (2018). Semantics of a Founda-
tional Subset for Executable UML Models (fUML), v.
1.4. OMG Standard Full Specification formal/18-12-
01.
Pei, K., Cao, Y., Yang, J., and Jana, S. (2017). DeepXplore:
Automated Whitebox Testing of Deep Learning Sys-
tems. Proceedings of the 26th Symposium on Operat-
ing Systems Principles.
Ries, B. (2009). SESAME - A Model-Driven Process for
the Test Selection of Small-Size Safety-Related Em-
bedded Software. PhD thesis, University of Luxem-
bourg, Luxembourg.
Ries, B. (2020). DRCM Editor and FSDD Case Study.
https://doi.org/10.5281/zenodo.4020938.
Shah, S. M. A., Anastasakis, K., and Bordbar, B. (2009).
From UML to Alloy and back again. In Proceedings
of the 6th International Workshop on Model-Driven
Engineering, Verification and Validation - MoDeVVa
’09, pages 1–10, Denver, Colorado. ACM Press.
Sommerville, I. (2016). Software Engineering. Pearson,
tenth edition edition.
Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. Eclipse Modeling Framework Second Edition.
page 14.
TDSP (Last visited on Sept. 2020). The Team Data
Science Process. https://docs.microsoft.com/en-
us/azure/machine-learning/team-data-science-
process/.
Tian, Y., Pei, K., Jana, S., and Ray, B. (2018). DeepTest:
Automated Testing of Deep-Neural-Network-driven
Autonomous Cars.
Torlak, E. and Jackson, D. (2007). Kodkod: A Relational
Model Finder. In Grumberg, O. and Huth, M., editors,
Tools and Algorithms for the Construction and Analy-
sis of Systems, volume 4424, pages 632–647. Springer
Berlin Heidelberg, Berlin, Heidelberg.
Viyovi
´
c, V., Maksimovi
´
c, M., and Perisi
´
c, B. (2014). Sir-
ius: A rapid development of DSM graphical editor.
In IEEE 18th International Conference on Intelligent
Engineering Systems INES 2014.
Vogelsang, A. and Borg, M. (2019). Requirements En-
gineering for Machine Learning: Perspectives from
Data Scientists. arXiv:1908.04674 [cs].
Yann, L. C., Corinna, C., and Christopher, B. (2018). THE
MNIST DATABASE of handwritten digits.
MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development
52