REFERENCES
Adelson, E. H., Bergen, J. R., et al. (1991). The plenoptic
function and the elements of early vision, volume 2.
Vision and Modeling Group, Media Laboratory, Mas-
sachusetts Institute of Technology.
Chiesa, V. and Dugelay, J.-L. (2018a). Advanced face pre-
sentation attack detection on light field images. In
17th International Conference of the Biometrics Spe-
cial Interest Group, BIOSIG, Darmstadt, Germany.
Chiesa, V. and Dugelay, J.-L. (2018b). On multi-view face
recognition using lytro images. pages 2250–2254.
Galbally, J., Marcel, S., and Fierrez, J. (2014). Biometric
antispoofing methods: A survey in face recognition.
IEEE Access, 2:1530–1552.
Galdi, C., Chiesa, V., Busch, C., Lobato Correia, P., Duge-
lay, J.-L., and Guillemot, C. (2019). Light fields for
face analysis. Sensors, 19(12):2687.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. In
Advances in neural information processing systems,
pages 2672–2680.
Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017).
Image-to-image translation with conditional adversar-
ial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
1125–1134.
Jain, A. K., Ross, A., and Uludag, U. (2005). Biometric
template security: Challenges and solutions. In 2005
13th European signal processing conference, pages 1–
4. IEEE.
Ji, Z., Zhu, H., and Wang, Q. (2016). Lfhog: A discrimina-
tive descriptor for live face detection from light field
image. In 2016 IEEE International Conference on Im-
age Processing (ICIP), pages 1474–1478.
Kazemi, V. and Sullivan, J. (2014). One millisecond face
alignment with an ensemble of regression trees. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 1867–1874.
Kim, S., Ban, Y., and Lee, S. (2014). Face liveness detection
using a light field camera. Sensors (Basel, Switzer-
land), 14(12):22471–22499.
Liu, M., Fo, H., Wei, Y., Rehman, Y., Po, L., and Lo,
W. (2019). Light field-based face liveness detection
with convolutional neural networks. SPIE, Electronic
Imaging, 28(1).
Mallat, K. and Dugelay, J.-L. (2018). Light field-based
face presentation attack detection: reviewing, bench-
marking and one step further. In 17th International
Conference of the Biometrics Special Interest Group,
BIOSIG.
Ng, R., Levoy, M., Br
´
edif, M., Duval, G., Horowitz, M.,
Hanrahan, P., et al. (2005). Light field photography
with a hand-held plenoptic camera. Computer Science
Technical Report CSTR, 2(11):1–11.
Nunes, J. F., Moreira, P. M., and Tavares, J. M. R. (2012).
Human motion analysis and simulation tools. XX En-
contro Portugu
ˆ
es de Computac¸
˜
ao Gr
´
afica (EPCG).
Raghavendra, R., Raja, K., and Busch, C. (2015). Pre-
sentation attack detection for face recognition using
light field camera. IEEE Trans. on Image Processing,
24(3):1060–1074.
Raghavendra, R., Raja, K. B., Yang, B., and Busch, C.
(2013a). Comparative evaluation of super-resolution
techniques for multi-face recognition using light-field
camera. In 2013 18th International Conference on
Digital Signal Processing (DSP), pages 1–6.
Raghavendra, R., Raja, K. B., Yang, B., and Busch, C.
(2013b). Improved face recognition at a distance us-
ing light field camera and super resolution schemes.
In SIN.
Raghavendra, R., Raja, K. B., Yang, B., and Busch, C.
(2013c). A novel image fusion scheme for robust mul-
tiple face recognition with light-field camera. In Pro-
ceedings of the 16th International Conference on In-
formation Fusion, pages 722–729. IEEE.
Raja, K. B., Raghavendra, R., Alaya Cheikh, F., and Busch,
C. (2015). Evaluation of fusion approaches for face
recognition using light field cameras.
Ratha, N. K., Connell, J. H., and Bolle, R. M. (2001).
Enhancing security and privacy in biometrics-based
authentication systems. IBM systems Journal,
40(3):614–634.
Sagonas, C., Antonakos, E., Tzimiropoulos, G., Zafeiriou,
S., and Pantic, M. (2016). 300 faces in-the-wild chal-
lenge: Database and results. Image and vision com-
puting, 47:3–18.
Sepas-Moghaddam, A., Chiesa, V., Correia, P. L., Pereira,
F., and Dugelay, J.-L. (2017a). The ist-eurecom light
field face database. In 2017 5th International Work-
shop on Biometrics and Forensics (IWBF), pages 1–6.
IEEE.
Sepas-Moghaddam, A., Correia, P. L., Nasrollahi, K.,
Moeslund, T. B., and Pereira, F. (2018a). Light field
based face recognition via a fused deep representation.
In 2018 IEEE 28th International Workshop on Ma-
chine Learning for Signal Processing (MLSP), pages
1–6. IEEE.
Sepas-Moghaddam, A., Correia, P. L., and Pereira, F.
(2017b). Light field local binary patterns descrip-
tion for face recognition. In 2017 IEEE International
Conference on Image Processing (ICIP), pages 3815–
3819.
Sepas-Moghaddam, A., Haque, M. A., Correia, P. L., Nas-
rollahi, K., Moeslund, T. B., and Pereira, F. (2019).
A double-deep spatio-angular learning framework for
light field based face recognition. IEEE Transactions
on Circuits and Systems for Video Technology, pages
1–1.
Sepas-Moghaddam, A., Malhadas, L., Correia, P., and
Pereira, F. (2018b). Face spoofing detection using
a light field imaging framework. IET Biometrics,
7(1):39–48.
Sepas-Moghaddam, A., Malhadas, L., Correia, P. L., and
Pereira, F. (2017c). Face spoofing detection using
a light field imaging framework. IET Biometrics,
7(1):39–48.
Demonstrating the Vulnerability of RGB-D based Face Recognition to GAN-generated Depth-map Injection
49