networks. In Advances in neural information process-
ing systems, pages 1097–1105.
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A.,
Ciompi, F., Ghafoorian, M., Van Der Laak, J. A.,
Van Ginneken, B., and S
´
anchez, C. I. (2017). A survey
on deep learning in medical image analysis. Medical
image analysis, 42:60–88.
Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., and Alsaadi,
F. E. (2017). A survey of deep neural network ar-
chitectures and their applications. Neurocomputing,
234:11–26.
Mormont, R., Geurts, P., and Mar
´
ee, R. (2018). Com-
parison of deep transfer learning strategies for digital
pathology. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops,
pages 2262–2271.
Oliphant, T. (2006). NumPy: A guide to NumPy. USA:
Trelgol Publishing.
Pan, S. J. and Yang, Q. (2010). A survey on transfer learn-
ing. IEEE Transactions on knowledge and data engi-
neering, 22(10):1345–1359.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Perou, C. M., Sørlie, T., Eisen, M. B., Van De Rijn, M.,
Jeffrey, S. S., Rees, C. A., Pollack, J. R., Ross,
D. T., Johnsen, H., Akslen, L. A., et al. (2000).
Molecular portraits of human breast tumours. nature,
406(6797):747–752.
Pham, N.-A., Morrison, A., Schwock, J., Aviel-Ronen, S.,
Iakovlev, V., Tsao, M.-S., Ho, J., and Hedley, D. W.
(2007). Quantitative image analysis of immunohisto-
chemical stains using a cmyk color model. Diagnostic
pathology, 2(1):1–10.
Ravishankar, H., Sudhakar, P., Venkataramani, R., Thiru-
venkadam, S., Annangi, P., Babu, N., and Vaidya, V.
(2016). Understanding the mechanisms of deep trans-
fer learning for medical images. In Deep Learning
and Data Labeling for Medical Applications, pages
188–196. Springer.
Ribeiro, E., Uhl, A., Wimmer, G., and H
¨
afner, M. (2016).
Exploring deep learning and transfer learning for
colonic polyp classification. Computational and
mathematical methods in medicine, 2016.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. (2015). Imagenet large scale visual
recognition challenge. International journal of com-
puter vision, 115(3):211–252.
Sheikhzadeh, F., Ward, R. K., van Niekerk, D., and Guil-
laud, M. (2018). Automatic labeling of molec-
ular biomarkers of immunohistochemistry images
using fully convolutional networks. PloS one,
13(1):e0190783.
Shin, H.-C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues,
I., Yao, J., Mollura, D., and Summers, R. M. (2016).
Deep convolutional neural networks for computer-
aided detection: Cnn architectures, dataset charac-
teristics and transfer learning. IEEE transactions on
medical imaging, 35(5):1285–1298.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Sørlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S.,
Johnsen, H., Hastie, T., Eisen, M. B., Van De Rijn,
M., Jeffrey, S. S., et al. (2001). Gene expression
patterns of breast carcinomas distinguish tumor sub-
classes with clinical implications. Proceedings of the
National Academy of Sciences, 98(19):10869–10874.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wo-
jna, Z. (2016). Rethinking the inception architecture
for computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 2818–2826.
Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T.,
Kendall, C. B., Gotway, M. B., and Liang, J. (2016).
Convolutional neural networks for medical image
analysis: Full training or fine tuning? IEEE trans-
actions on medical imaging, 35(5):1299–1312.
Torrey, L. and Shavlik, J. (2010). Transfer learning. In
Handbook of research on machine learning appli-
cations and trends: algorithms, methods, and tech-
niques, pages 242–264. IGI Global.
Van Ginneken, B., Setio, A. A., Jacobs, C., and Ciompi,
F. (2015). Off-the-shelf convolutional neural network
features for pulmonary nodule detection in computed
tomography scans. In 2015 IEEE 12th International
symposium on biomedical imaging (ISBI), pages 286–
289. IEEE.
Venables, W. N. and Ripley, B. D. (2013). Modern applied
statistics with S-PLUS. Springer Science & Business
Media.
Veta, M., Pluim, J. P., Van Diest, P. J., and Viergever, M. A.
(2014). Breast cancer histopathology image analysis:
A review. IEEE Transactions on Biomedical Engi-
neering, 61(5):1400–1411.
Wang, D., Khosla, A., Gargeya, R., Irshad, H., and Beck,
A. H. (2016). Deep learning for identifying metastatic
breast cancer. arXiv preprint arXiv:1606.05718.
Webster, L., Bilous, A., Willis, L., Byth, K., Burgemeister,
F., Salisbury, E., Clarke, C., and Balleine, R. (2005).
Histopathologic indicators of breast cancer biology:
insights from population mammographic screening.
British journal of cancer, 92(8):1366–1371.
Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014).
How transferable are features in deep neural net-
works? In Advances in neural information processing
systems, pages 3320–3328.
ICPRAM 2021 - 10th International Conference on Pattern Recognition Applications and Methods
506