Table 4: Results to Brightkite.
Method Best set of the grid search
Accuracy Precision Recall F1-Score
mean std mean std mean std mean std
DeepeST-LSTM un:400, es:100, dp:0.5 0,9591 0,0018 0,9644 0,0048 0,9514 0,0025 0,9512 0,0033
DeepeST-BILSTM un:100, es:100, dp:0.5 0,9632 0,0030 0,9658 0,0038 0,9563 0,0044 0,9557 0,0041
BiTULER un:100, es:100, dp:0.5 0,9372 0,0052 0,9417 0,0055 0,9211 0,0068 0,9234 0,0066
TULVAE un:100, es:300, dp:0.5, z:300 0,9452 0,0044 0,9439 0,0062 0,9325 0,0048 0,9308 0,0054
Random Forest ne:200, md:30, mss:5, msl:1, mf:auto, bs:False 0,8717 0,0043 0,8744 0,0090 0,8431 0,0060 0,8440 0,0072
XGBoost ne:2000, md:5, gm:0, ss:0.8, cst:0.5, l1:1, l2:100 0,8769 0,0047 0,8717 0,0059 0,8481 0,0063 0,8483 0,0065
Table 5: Results to Gowalla.
Method Best set of the grid search
Accuracy Precision Recall F1-Score
mean std mean std mean std mean std
DeepeST-LSTM un:100, es:400, dp:0.5 0,9760 0,0039 0,9821 0,0027 0,9744 0,0042 0,9750 0,0039
DeepeST-BILSTM un:200, es:100, dp:0.5 0,9739 0,0038 0,9798 0,0034 0,9727 0,0040 0,9723 0,0044
BiTULER un:300, es:400, dp:0.5 0,9122 0,0050 0,9274 0,0070 0,9101 0,0060 0,9078 0,0072
TULVAE un:100, es:300, dp:0.5, z:300 0,9159 0,0085 0,9338 0,0121 0,9111 0,0096 0,9105 0,0109
Random Forest ne:400, md:30, mss:2, msl:2, mf:sqrt, bs:False 0,7047 0,0088 0,7020 0,0139 0,6841 0,0093 0,6631 0,0109
XGBoost ne:2000, md:10, gm:0, ss:0.8, cst:0.5, l1:1, l2:100 0,6545 0,0112 0,6393 0,0197 0,6327 0,0134 0,6143 0,0152
Table 6: Results to Criminal Dataset.
Method Best set of the grid search
Accuracy Precision Recall F1-Score
mean std mean std mean std mean std
DeepeST-LSTM un:100, es:400, dp:0.5 0,9188 0,0010 0,8792 0,0075 0,8283 0,0043 0,8504 0,0040
DeepeST-BILSTM un:200, es:100, dp:0.5 0,9203 0,0013 0,8826 0,0071 0,8365 0,0052 0,8564 0,0026
Random Forest ne:400, md:30, mss:2, msl:2, mf:sqrt, bs:False 0,7917 0,0002 0,6806 0,0017 0,5515 0,0010 0,5910 0,0012
XGBoost ne:2000, md:10, gm:0, ss:0.8, cst:0.5, l1:1, l2:100 0,8121 0,0008 0,6671 0,0017 0,5765 0,0015 0,6084 0,0011
preprocessing and features creation. Finally, we aim
at studying how to improve accuracy by means of
other deep learning techniques, like attention mech-
anisms.
REFERENCES
Breiman, L. (2001). Random forests. Machine Learning,
45(1):5–32.
Chainey, S. and Ratcliffe, J. (2013). GIS and crime map-
ping. John Wiley & Sons.
Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree
boosting system. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, volume 13-17-Augu, pages 785–
794.
Chollet, F. (2018). Deep Learning mit Python und Keras:
Das Praxis-Handbuch vom Entwickler der Keras-
Bibliothek. MITP-Verlags GmbH & Co. KG.
Fang, S.-H., Liao, H.-H., Fei, Y.-X., Chen, K.-H., Huang,
J.-W., Lu, Y.-D., and Tsao, Y. (2016). Transportation
modes classification using sensors on smartphones.
Sensors, 16(8):1324.
Gao, Q., Zhou, F., Zhang, K., Trajcevski, G., Luo, X., and
Zhang, F. (2017). Identifying human mobility via
trajectory embeddings. In IJCAI, volume 17, pages
1689–1695.
Hochreiter, S. and Schmidhuber, J. (1997). Long Short-
Term Memory. Neural Computation, 9(8):1735–1780.
Lee, J.-G., Han, J., Li, X., and Gonzalez, H. (2008).
Traclass: trajectory classification using hierarchical
region-based and trajectory-based clustering. Pro-
ceedings of the VLDB Endowment, 1(1):1081–1094.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.
Patel, D. (2013). Incorporating duration and region associ-
ation information in trajectory classification. Journal
of Location Based Services, 7(4):246–271.
Patterson, D. J., Liao, L., Fox, D., and Kautz, H. (2003). In-
ferring high-level behavior from low-level sensors. In
International Conference on Ubiquitous Computing,
pages 73–89. Springer.
Schuster, M. and Paliwal, K. K. (1997). Bidirectional re-
current neural networks. IEEE Transactions on Signal
Processing, 45(11):2673–2681.
Zheng, Y. (2015). Trajectory Data Mining. ACM Transac-
tions on Intelligent Systems and Technology, 6(3):1–
41.
Zheng, Y., Liu, L., Wang, L., and Xie, X. (2008). Learning
transportation mode from raw gps data for geographic
applications on the web. In Proceedings of the 17th
international conference on World Wide Web, pages
247–256. ACM.
Zhou, F., Gao, Q., Trajcevski, G., Zhang, K., Zhong, T., and
Zhang, F. (2018). Trajectory-user linking via varia-
tional autoencoder. In IJCAI, pages 3212–3218.
Zhou, F., Yin, R., Trajcevski, G., Zhang, K., Wu, J., and
Khokhar, A. (2019). Improving human mobility iden-
tification with trajectory augmentation. pages 1–31.
Springer.
Using Deep Learning for Trajectory Classification
671