nese Association of Automation (YAC), pages 324–
328. IEEE.
Graves, A., Fern
´
andez, S., Gomez, F., and Schmidhu-
ber, J. (2006). Connectionist temporal classification:
labelling unsegmented sequence data with recurrent
neural networks. In Proceedings of the 23rd interna-
tional conference on Machine learning, pages 369–
376.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Hsu, G.-S., Ambikapathi, A., Chung, S.-L., and Su, C.-P.
(2017). Robust license plate detection in the wild.
In 2017 14th IEEE International Conference on Ad-
vanced Video and Signal Based Surveillance (AVSS),
pages 1–6. IEEE.
Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. (2017). Densely connected convolutional net-
works. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4700–
4708.
Khan, M. A., Sharif, M., Javed, M. Y., Akram, T., Yas-
min, M., and Saba, T. (2017). License number plate
recognition system using entropy-based features se-
lection approach with svm. IET Image Processing,
12(2):200–209.
Laroca, R., Severo, E., Zanlorensi, L. A., Oliveira, L. S.,
Gonc¸alves, G. R., Schwartz, W. R., and Menotti, D.
(2018). A robust real-time automatic license plate
recognition based on the yolo detector. In 2018
International Joint Conference on Neural Networks
(IJCNN), pages 1–10. IEEE.
Li, H. and Shen, C. (2016). Reading car license plates using
deep convolutional neural networks and lstms. arXiv
preprint arXiv:1601.05610.
Li, H., Wang, P., You, M., and Shen, C. (2018). Reading car
license plates using deep neural networks. Image and
Vision Computing, 72:14–23.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Euro-
pean conference on computer vision, pages 740–755.
Springer.
Liu, G., Ma, Z., Du, Z., and Wen, C. (2011). The calcula-
tion method of road travel time based on license plate
recognition technology. In Advances in information
technology and education, pages 385–389. Springer.
LPA Dataset, L. P. o. A. D. (2019). License Plates of Alge-
ria Dataset. https://github.com/mouad12345/License
Plates of Algeria Dataset.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–
788.
Redmon, J. and Farhadi, A. (2017). Yolo9000: better, faster,
stronger. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7263–
7271.
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767.
Selmi, Z., Halima, M. B., and Alimi, A. M. (2017). Deep
learning system for automatic license plate detection
and recognition. In 2017 14th IAPR international
conference on document analysis and recognition (IC-
DAR), volume 1, pages 1132–1138. IEEE.
Shi, B., Bai, X., and Yao, C. (2016). An end-to-end train-
able neural network for image-based sequence recog-
nition and its application to scene text recognition.
IEEE transactions on pattern analysis and machine
intelligence, 39(11):2298–2304.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
ˇ
Spa
ˇ
nhel, J., Sochor, J., Jur
´
anek, R., Herout, A., Mar
ˇ
s
´
ık,
L., and Zem
ˇ
c
´
ık, P. (2017). Holistic recognition of
low quality license plates by cnn using track anno-
tated data. In 2017 14th IEEE International Confer-
ence on Advanced Video and Signal Based Surveil-
lance (AVSS), pages 1–6. IEEE.
Wang, X., Man, Z., You, M., and Shen, C. (2017). Adver-
sarial generation of training examples: applications
to moving vehicle license plate recognition. arXiv
preprint arXiv:1707.03124.
Williams, R. J. and Zipser, D. (1995). Gradient-based learn-
ing algorithms for recurrent. Backpropagation: The-
ory, architectures, and applications, 433.
Wu, C., Xu, S., Song, G., and Zhang, S. (2018). How many
labeled license plates are needed? In Chinese Con-
ference on Pattern Recognition and Computer Vision
(PRCV), pages 334–346. Springer.
Xie, L., Ahmad, T., Jin, L., Liu, Y., and Zhang, S. (2018).
A new cnn-based method for multi-directional car li-
cense plate detection. IEEE Transactions on Intelli-
gent Transportation Systems, 19(2):507–517.
Yang, A. (2018 (accessed February 29, 2019)). A Keras im-
plementation of Yolov3. https://github.com/Adamdad/
keras-YOLOv3-mobilenet.
An ALPR System-based Deep Networks for the Detection and Recognition
211