REFERENCES
Arkin, R. (1998). Behavior-Based Robotics. MIT Press.
Cambridge. MA 1998.
Banzhaf, W., Nordin, P., and Olmer, M. (1997). Generating
adaptive behavior using function regression within ge-
netic programming and a real robot. In Proceedings of
the Second International Conference on Genetic Pro-
gramming, San Francisco, pages 35–43.
Barricelli, N. A. (1954). Esempi numerici di processi di
evoluzione. volume 6, pages 45–68. Methods.
Brooks, R. (1986). A robust layered control system for a
mobile robot. In IEEE Journal of Robotics and Au-
tomation, volume 2, pages 14–23. IEEE.
Floreano, D., Husbands, P., and Nolfi, S. (2008). Evolution-
ary robotics. In Springer handbook of robotics, pages
1423–1451. Springer.
Fogel, D. B. (2006). Nils barricelli-artificial life, coevolu-
tion, self-adaptation. In Computational Intelligence
Magazine, volume 1, pages 41–45. IEEE.
Fraundorfer, F. and Scaramuzza, D. (2012). Visual odome-
try [tutorial]. In IEEE Robotics and Automation Mag-
azine, volume 19, pages 78–90. IEEE.
Guo, R., Sun, P., Lindgren, E., Geng, Q., Simcha, D.,
Chern, F., and Kumar, S. (2020). Accelerating large-
scale inference with anisotropic vector quantization.
Konig, L. (2015). In Complex Behavior in Evolutionary
Robotics. Walter de Gruyter GmbH & Co KG, 2015.
Latombe, J.-C., Lazanas, A., and Shekhar, S. (1991). Robot
motion planning with uncertainty in control and sens-
ing. Artificial Intelligence, 52(1):1 – 47.
Marocco, D. and Floreano, D. (2002). Active vision and
feature selection in evolutionary behavioral systems.
In From animals to animats, volume 7, pages 247–
255.
Mohanan, M. G. and Salgaonkar, A. (2020). Probabilistic
Approach to Robot Motion Planning in Dynamic En-
vironments. SN Computer Science, 1(181).
Negrete, M., Savage, J., and Contreras, L. (2018). A
Motion-Planning System for a Domestic Service
Robot. SPIIRAS Proceedings, 60(5):5–38.
Nelson, A. L., Barlow, G. J., and Doitsidis, L. (2009). Fit-
ness functions in evolutionary robotics: A survey and
analysis. volume 57, pages 345–370. Elsevier.
Rabiner, L. and Juang, B. (1986). An introduction to hidden
markov models. volume 3, pages 4–16. Assp maga-
zine, IEEE.
Savage, J., Fuentes, O., Contreras, L., and Negrete, M.
(2018). Map representation using hidden markov
models for mobile robot localization. In 13th Interna-
tional Scientific-Technical Conference on Electrome-
chanics and Robotics.
Seok, H.-S., Lee, K.-J., and Zhang, B.-T. (2000). An on-
line learning method for objectlocating robots using
genetic programming on evolvable hardware. In Pro-
ceedings of the Fifth International Symposium on Ar-
tificial Life and Robotics, volume 1, pages 321–324.
Citeseer.
Shahriar, S. and Zelinsky, A. (1999). Mobile robot naviga-
tion based on localisation using hidden markov mod-
els. In Australasian Conference on Robotics.
Shahriar, S. and Zelinsky, A. (2014). Robot localization
from minimalist inertial data using a hidden markov
model. In IEEE International Conference on Au-
tonomous Robot Systems and Competitions.
Vidal, E. and Thollard, F. (2005). Probabilistic finite-state
machines. In IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, volume 27, pages 1013–
1025.
Viterbi, A. (1967). Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm.
In IEEE Transactions on Information Theory, vol-
ume 13, pages 260–269.
Yakoubi, M. A. and Laskri, M. T. (2016). The path planning
of cleaner robot for coverage region using genetic al-
gorithms. In Journal of Innovation in Digital Ecosys-
tems, volume 3.
Yakoubi, M. A. and Laskri, M. T. (2018). Genetic algo-
rithm based approach for autonomous mobile robot
path plannings, procedia computer science. 127:180–
189.
Generating Reactive Robots’ Behaviors using Genetic Algorithms
707