ACKNOWLEDGMENTS
This work was funded by the FEDER Data Analyt-
ics Platform project (http://tiny.cc/feder-dap-project).
Special thanks to Anne Hendrick, Samuel Renault
and Raynald Jadoul for their support.
REFERENCES
Cao, T., Roy, D., and Nedelescu, T. (2019). Optimizing
Commute Time with IBM Watson Studio. In CCSE
2019, pages 388–390.
Drozdal, J., Weisz, J., Wang, D., Dass, G., Yao, B., Zhao,
C., Muller, M., Ju, L., and Su, H. (2020). Trust in
AutoML: exploring information needs for establishing
trust in automated machine learning systems. In ACM
IUI 2020, pages 297–307.
Feurer, M. and Hutter, F. (2019). Hyperparameter optimiza-
tion. In Automated Machine Learning, pages 3–33.
Springer, Cham.
Feurer, M., Klein, A., Eggensperger, K., Springenberg,
J. T., Blum, M., and Hutter, F. (2019). Auto-
sklearn: efficient and robust automated machine learn-
ing. In Automated Machine Learning, pages 113–134.
Springer, Cham.
Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B.,
and Vanschoren, J. (2019). An open source AutoML
benchmark. arXiv preprint.
Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue,
H., and Bing, G. (2017). Learning from class-
imbalanced data: Review of methods and applica-
tions. Expert Systems with Applications, 73:220–239.
Hevia-Koch, P. and Ladenburg, J. (2019). Where should
wind energy be located? a review of preferences and
visualisation approaches for wind turbine locations.
Energy Research and Social Science, 53:23–33.
Hutter, F., Kotthoff, L., and Vanschoren, J. (2019). Au-
tomated machine learning: methods, systems, chal-
lenges. Springer Nature.
Kazak, J., Van Hoof, J., and Szewranski, S. (2017). Chal-
lenges in the wind turbines location process in central
europe–the use of spatial decision support systems.
Renewable and Sustainable Energy Reviews, 76:425–
433.
Kohavi, R. et al. (1995). A study of cross-validation and
bootstrap for accuracy estimation and model selec-
tion. In Ijcai, volume 14, pages 1137–1145. Montreal,
Canada.
Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., and
Leyton-Brown, K. (2017). Auto-WEKA 2.0: Auto-
matic model selection and hyperparameter optimiza-
tion in WEKA. The Journal of Machine Learning Re-
search, 18(1):826–830.
Mikalef, P., Giannakos, M. N., Pappas, I. O., and Krogstie,
J. (2018). The human side of big data: Understanding
the skills of the data scientist in education and indus-
try. In IEEE Global Engineering Education Confer-
ence, pages 503–512.
Milutinovic, M., Schoenfeld, B., Martinez-Garcia, D., Ray,
S., Shah, S., and Yan, D. (2020). On evaluation of
AutoML systems.
Olson, R. S. and Moore, J. H. (2016). TPOT: A tree-
based pipeline optimization tool for automating ma-
chine learning. In Workshop on automatic machine
learning, pages 66–74. PMLR.
Parisot, O. and Tamisier, T. (2015). An interactive tool for
transparent data preprocessing. ERCIM NEWS, 100(1-
4):33.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. (2011). Scikit-learn:
Machine learning in python. Journal of ML research,
12:2825–2830.
Raschka, S. (2018). Model evaluation, model selection,
and algorithm selection in machine learning. arXiv
preprint.
Shahab, A. and Singh, M. (2019). Comparative analysis of
different machine learning algorithms in classification
of suitability of renewable energy resource. In ICCSP
2019, pages 0360–0364.
Steinruecken, C., Smith, E., Janz, D., Lloyd, J., and Ghahra-
mani, Z. (2019). The automatic statistician. In Auto-
mated Machine Learning, pages 161–173. Springer,
Cham.
Tsiakmaki, M., Kostopoulos, G., Kotsiantis, S., and Ra-
gos, O. (2020). Implementing AutoML in educational
data mining for prediction tasks. Applied Sciences,
10(1):90.
Waring, J., Lindvall, C., and Umeton, R. (2020). Automated
machine learning: Review of the state-of-the-art and
opportunities for healthcare. Artificial Intelligence in
Medicine, page 101822.
Automated Machine Learning for Wind Farms Location
227