REFERENCES
Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020).
YOLOv4: Optimal Speed and Accuracy of Object De-
tection. arXiv preprint arXiv:2004.10934.
Borji, A., Cheng, M.-M., Hou, Q., Jiang, H., and Li, J.
(2019). Salient object detection: A survey. Compu-
tational Visual Media, 5(1):117–150.
Cai, H., Zhu, L., and Han, S. (2019). Proxylessnas: Direct
neural architecture search on target task and hardware.
arXiv preprint arXiv:1812.00332.
Cheng, Y., Wang, D., Zhou, P., and Zhang, T. (2017). A sur-
vey of model compression and acceleration for deep
neural networks. arXiv preprint arXiv:1710.09282.
Fernandez-Marques, J., Whatmough, P. N., Mundy, A., and
Mattina, M. (2020). Searching for Winograd-aware
Quantized Networks. MLSys.
Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014).
Rich feature hierarchies for accurate object detection
and semantic segmentation. In IEEE CVPR, pages
580–587.
Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.,
et al. (2019). Searching for Mobilenetv3. IEEE ICCV,
pages 1314–1324.
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., and Adam,
H. (2017). Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications. arXiv
preprint arXiv:1704.04861.
Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E.
(2019). Squeeze-and-Excitation Networks. IEEE
PAMI, 5(1):117–150.
Huang, R., Pedoeem, J., and Chen, C. (2018). YOLO-LITE:
a real-time object detection algorithm optimized for
non-GPU computers. In IEEE Big Data, pages 2503–
2510.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Doll
´
ar, P., and Zitnick, C. L. (2014). Mi-
crosoft coco: Common objects in context. In ECCV,
pages 740–755. Springer.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot
multibox detector. In ECCV, pages 21–37.
Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T.
(2019). Rethinking the value of network pruning.
arXiv preprint arXiv:1810.05270.
Pan, M., Zhu, X., Li, Y., Qian, J., and Liu, P. (2020). MR-
Net: A Keypoint Guided Multi-scale Reasoning Net-
work for Vehicle Re-identification. In Yang, H., Pa-
supa, K., Leung, A. C., Kwok, J. T., Chan, J. H.,
and King, I., editors, Neural Information Processing,
ICONIP 2020, volume 1332, pages 469–478.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and
Lerer, A. (2017). Automatic differentiation in Py-
Torch. In NIPS Autodiff Workshop.
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2018). Mobilenetv2: Inverted residuals
and linear bottlenecks. In IEEE CVPR, pages 4510–
4520.
Tan, M. and Le, Q. V. (2019). Efficientnet: Rethink-
ing model scaling for convolutional neural networks.
ICML.
Wong, A., Famuori, M., Shafiee, M. J., Li, F., Chwyl, B.,
and Chung, J. (2019). Yolo nano: a highly compact
you only look once convolutional neural network for
object detection. arXiv preprint arXiv:1910.01271.
ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence
158