REFERENCES
Day, M. A., Clement, M. R., Russo, J. D., Davis, D., &
Chung, T. H. (2015, June). Multi-uav software systems
and simulation architecture. In 2015 International
Conference on Unmanned Aircraft Systems (ICUAS)
(pp. 426-435). IEEE.
Miyahara, K. (2017, June). Prototype of ARM processor-
based robot module for a multi-agent mobile robot
system. In 2017 14th International Conference on
Ubiquitous Robots and Ambient Intelligence (URAI)
(pp. 629-631). IEEE.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., ... & Rabinovich, A. (2015). Going
deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition
(pp. 1-9).
Nguyen, V., Kim, O. T. T., Pham, C., Oo, T. Z., Tran, N.
H., Hong, C. S., & Huh, E. N. (2018). A survey on
adaptive multi-channel MAC protocols in VANETs
using Markov models. IEEE Access, 6, 16493-16514.
Bisht, M., Abbott, J., & Gaffar, A. (2017, August). Social
dilemma of autonomous cars a critical analysis. In 2017
IEEE SmartWorld, Ubiquitous Intelligence &
Computing, Advanced & Trusted Computed, Scalable
Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City
Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/S
CI) (pp. 1-3). IEEE.
Meggitt, D., Roper, C., Henson, J., & Wicklund, D. (2016,
September). Autonomous Underwater Vehicle
Intervention for Advanced Undersea Networks. In
OCEANS 2016 MTS/IEEE Monterey (pp. 1-5). IEEE.
Chen, Y., Wang, W., Abdollahi, Z., Wang, Z., Schulte, J.,
Krovi, V., & Jia, Y. (2018). A Robotic Lift Assister: A
Smart Companion for Heavy Payload Transport and
Manipulation in Automotive Assembly. IEEE Robotics
& Automation Magazine, 25(2), 107-119.
Ravindran, R., Mills, J. P., & Krishnan, M. (2018, August).
Autonomous Multi-Robot Platoon Monitoring. In 2018
IEEE 61st International Midwest Symposium on
Circuits and Systems (MWSCAS) (pp. 328-331). IEEE.
Ly, O., Gimbert, H., Passault, G., & Baron, G. (2015,
April). A fully autonomous robot for putting posts for
trellising vineyard with centimetric accuracy. In 2015
IEEE International Conference on Autonomous Robot
Systems and Competitions (pp. 44-49). IEEE.
Naik, N. S., Shete, V. V., & Danve, S. R. (2016, August).
Precision agriculture robot for seeding function. In
2016 International Conference on Inventive
Computation Technologies (ICICT) (Vol. 2, pp. 1-3).
IEEE.
Alberri, M., Hegazy, S., Badra, M., Nasr, M., Shehata, O.
M., & Morgan, E. I. (2018, September). Generic ROS-
based Architecture for Heterogeneous Multi-
Autonomous Systems Development. In 2018 IEEE
International Conference on Vehicular Electronics and
Safety (ICVES) (pp. 1-6). IEEE.
Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine
learning, 8(3-4), 279-292.
Sutton, R. S., & Barto, A. G. (1998). Introduction to
reinforcement learning (Vol. 2, No. 4).
Sarkar, U. K., Chakrabarti, P. P., Ghose, S., & DeSarkar, S.
C. (1994). Improving greedy algorithms by lookahead-
search. Journal of Algorithms, 16(1), 1-23.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013).
Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602.
Asawa, C., Elamri, C., & Pan, D. (2017). Using Transfer
Learning Between Games to Improve Deep
Reinforcement Learning Performance and Stability.
Yin, H., & Pan, S. J. (2017, February). Knowledge transfer
for deep reinforcement learning with hierarchical
experience replay. In Thirty-First AAAI Conference on
Artificial Intelligence.
Parisotto, E., Ba, J. L., & Salakhutdinov, R. (2015). Actor-
mimic: Deep multitask and transfer reinforcement
learning. arXiv preprint arXiv:1511.06342.
Kempka, M., Wydmuch, M., Runc, G., Toczek, J., &
Jaśkowski, W. (2016, September). Vizdoom: A doom-
based ai research platform for visual reinforcement
learning. In 2016 IEEE Conference on Computational
Intelligence and Games (CIG) (pp. 1-8). IEEE.
Slade 3. http://slade.mancubus.net/. Accessed em: 2019-06-
18
Zdoom. https://zdoom.org/index. Accessed em: 2019-01-
25
Zhong, F., Qiu, W., Yan, T., Alan, Y., & Wang, Y. (2017).
Gym-UnrealCV: Realistic virtual worlds for visual
reinforcement learning.
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., ... & Ghemawat, S. (2016). Tensorflow:
Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467.