He, X. and Jaeger, H. (2018). Overcoming catastrophic
interference using conceptor-aided backpropagation.
In International Conference on Learning Representa-
tions.
Hinton, G. E., Vinyals, O., and Dean, J. (2015). Dis-
tilling the knowledge in a neural network. ArXiv,
abs/1503.02531.
Hou, S., Pan, X., Loy, C. C., Wang, Z., and Lin, D. (2019).
Learning a unified classifier incrementally via rebal-
ancing. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 831–
839.
Kemker, R. and Kanan, C. (2017). Fearnet: Brain-
inspired model for incremental learning. arXiv preprint
arXiv:1711.10563.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho,
T., Grabska-Barwinska, A., et al. (2017). Overcoming
catastrophic forgetting in neural networks. Proceedings
of the national academy of sciences, 114(13):3521–
3526.
Koch, G., Zemel, R., and Salakhutdinov, R. (2015). Siamese
neural networks for one-shot image recognition. In
ICML deep learning workshop, volume 2. Lille.
Krizhevsky, A., Nair, V., and Hinton, G. (2014). The cifar-10
dataset. online: http://www. cs. toronto. edu/kriz/cifar.
html, 55.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information process-
ing systems, pages 1097–1105.
Kumaran, D., Hassabis, D., and McClelland, J. L. (2016).
What learning systems do intelligent agents need? com-
plementary learning systems theory updated. Trends
in Cognitive Sciences, 20(7):512 – 534.
Lesort, T., Caselles-Dupr
´
e, H., Garcia-Ortiz, M., Stoian,
A., and Filliat, D. (2019). Generative models from the
perspective of continual learning. In 2019 International
Joint Conference on Neural Networks (IJCNN), pages
1–8. IEEE.
Li, Z. and Hoiem, D. (2017). Learning without forgetting.
IEEE transactions on pattern analysis and machine
intelligence, 40(12):2935–2947.
Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., and Song, L. (2017).
Sphereface: Deep hypersphere embedding for face
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 212–
220.
Lopez-Paz, D. and Ranzato, M. (2017). Gradient episodic
memory for continual learning. In Advances in neural
information processing systems, pages 6467–6476.
Mallya, A. and Lazebnik, S. (2018). Packnet: Adding mul-
tiple tasks to a single network by iterative pruning.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7765–7773.
Masana, M., Tuytelaars, T., and van de Weijer, J. (2020).
Ternary feature masks: continual learning without any
forgetting. arXiv preprint arXiv:2001.08714.
McClelland, J. L., McNaughton, B. L., and O’Reilly, R. C.
(1995). Why there are complementary learning systems
in the hippocampus and neocortex: insights from the
successes and failures of connectionist models of learn-
ing and memory. Psychological review, 102(3):419.
McCloskey, M. and Cohen, N. J. (1989). Catastrophic in-
terference in connectionist networks: The sequential
learning problem. In Psychology of learning and moti-
vation, volume 24, pages 109–165. Elsevier.
Munkhdalai, T. and Yu, H. (2017). Meta networks. Proceed-
ings of machine learning research, 70:2554–2563.
Newell, A., Yang, K., and Deng, J. (2016). Stacked hourglass
networks for human pose estimation. In European con-
ference on computer vision, pages 483–499. Springer.
Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E.
(2017). Variational continual learning. arXiv preprint
arXiv:1710.10628.
Ostapenko, O., Puscas, M. M., Klein, T., J
¨
ahnichen, P., and
Nabi, M. (2019). Learning to remember: A synap-
tic plasticity driven framework for continual learning.
2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 11313–11321.
Qi, H., Brown, M., and Lowe, D. G. (2018). Low-shot
learning with imprinted weights. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 5822–5830.
Ravi, S. and Larochelle, H. (2017). Optimization as a model
for few-shot learning. In ICLR.
Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H.
(2017). icarl: Incremental classifier and representation
learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 2001–
2010.
Robins, A. (1995). Catastrophic forgetting, rehearsal and
pseudorehearsal. Connection Science, 7(2):123–146.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. (2015). Imagenet large scale visual recog-
nition challenge. International journal of computer
vision, 115(3):211–252.
Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H.,
Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and
Hadsell, R. (2016). Progressive neural networks. ArXiv,
abs/1606.04671.
Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and
Lillicrap, T. (2016a). Meta-learning with memory-
augmented neural networks. In International confer-
ence on machine learning, pages 1842–1850.
Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D.,
and Lillicrap, T. (2016b). One-shot learning with
memory-augmented neural networks. arXiv preprint
arXiv:1605.06065.
Serra, J., Suris, D., Miron, M., and Karatzoglou, A. (2018).
Overcoming catastrophic forgetting with hard attention
to the task. arXiv preprint arXiv:1801.01423.
Shin, H., Lee, J. K., Kim, J., and Kim, J. (2017). Continual
learning with deep generative replay. In Advances in
ICPRAM 2021 - 10th International Conference on Pattern Recognition Applications and Methods
266