Table 1: Source SVHN Target MNIST.
Model Source Accuracy Target Accuracy Domain Shift
Dynamic Routing 95.25 69.79 25.46
EM-Routing 94.3 75.13 19.17
Self-Routing 92.91 60.03 32.88
CNN 96.11 74.01 22.1
Table 2: Source SVHN Target MNIST-M.
Model Source Accuracy Target Accuracy Domain Shift
Dynamic Routing 95.25 47.94 47.31
EM-Routing 94.30 51.31 42.99
Self-Routing 92.91 46.92 45.99
CNN 96.11 53.23 42.88
Table 3: Source CIFAR-10 Target STL10.
Model Source Accuracy Target Accuracy Domain Shift
Dynamic Routing 85.15 30.62 54.53
EM-Routing 82.67 39 43.67
Self-Routing 79.63 38.55 41.08
CNN 91.88 47.06 44.82
we examined how well these models adapt to new
domains. These Capsule network models are then
compared with a baseline CNN architecture to prove
the former’s superiority in adapting to new domains.
A lower domain shift hence proves the Capsule net-
work’s viewpoint invariance and equivariance proper-
ties. This can be further enhanced by experimenting
on larger different datasets and routing techniques to
better understand the Domain Shift in Capsule Net-
works. Further work can be done to use Capsule net-
works for domain adaptation and domain generaliza-
tion.
REFERENCES
Baker, N., Lu, H., Erlikhman, G., and Kellman, P. J. (2018).
Deep convolutional networks do not classify based
on global object shape. PLoS computational biology,
14(12):e1006613.
Coates, A., Ng, A., and Lee, H. (2011). An analy-
sis of single-layer networks in unsupervised feature
learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statis-
tics, pages 215–223.
Doerig, A., Schmittwilken, L., Sayim, B., Manassi, M., and
Herzog, M. H. (2019). Capsule networks but not clas-
sic cnns explain global visual processing. bioRxiv,
page 747394.
Ganin, Y., Ustinova, E., Ajakan, H., Germain, P.,
Larochelle, H., Laviolette, F., Marchand, M., and
Lempitsky, V. S. (2016). Domain-adversarial training
of neural networks. J. Mach. Learn. Res., 17:59:1–
59:35.
Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wich-
mann, F. A., and Brendel, W. (2018). Imagenet-
trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness. arXiv
preprint arXiv:1811.12231.
Hahn, T., Pyeon, M., and Kim, G. (2019). Self-routing
capsule networks. In Advances in Neural Information
Processing Systems, pages 7658–7667.
Hinton, G. E., Sabour, S., and Frosst, N. (2018). Matrix
capsules with EM routing. In International conference
on learning representations.
Jaiswal, A., AbdAlmageed, W., Wu, Y., and Natarajan, P.
(2018). Capsulegan: Generative adversarial capsule
network. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 0–0.
Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple
layers of features from tiny images.
LeCun, Y., Cortes, C., and Burges, C. (2010). MNIST hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2.
Liu, W., Barsoum, E., and Owens, J. D. (2018). Object
localization with a weakly supervised capsnet. arXiv
preprint arXiv:1805.07706.
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and
Ng, A. Y. (2011). Reading digits in natural images
with unsupervised feature learning.
Sabour, S., Frosst, N., and Hinton, G. E. (2017). Dynamic
routing between capsules. In Advances in neural in-
formation processing systems, pages 3856–3866.
Sun, B., Feng, J., and Saenko, K. (2017). Correlation Align-
ment for Unsupervised Domain Adaptation, pages
153–171. Springer International Publishing, Cham.
Verma, S. and Zhang, Z.-L. (2018). Graph cap-
sule convolutional neural networks. arXiv preprint
arXiv:1805.08090.
Wang, M. and Deng, W. (2018). Deep visual domain adap-
tation: A survey. Neurocomputing, 312:135 – 153.
ICPRAM 2021 - 10th International Conference on Pattern Recognition Applications and Methods
278