Ikegami, T. and Iizuka, H. (2007). Turn-taking interaction
as a cooperative and co-creative process. Infant Be-
havior and Development, (30):278–288.
Kim, H., Davies, P., and Walker, S. (2015). New scal-
ing relation for information transfer in biological
networks. Journal of the Royal Society, Interface,
12(113):20150944.
Klyubin, A. S., Polani, D., and Nehaniv, C. L. (2007). Rep-
resentations of space and time in the maximization of
information flow in the perception-action loop. Neural
Computation, 19(9):2387–2432.
Laughlin, S. B. (2001). Energy as a constraint on the cod-
ing and processing of sensory information. Current
Opinion in Neurobiology, 11:475–480.
Lindner, M., Vicente, R., Priesemann, V., and Wibral, M.
(2011). Trentool: A matlab open source toolbox
to analyse information flow in time series data with
transfer entropy. BMC neuroscience, 12:119.
Lizier, J. T., Prokopenko, M., and Zomaya, A. Y. (2014).
A Framework for the Local Information Dynamics of
Distributed Computation in Complex Systems, pages
115–158.
Marshall, J. A. R., Bogacz, R., Dornhaus, A., Planqu
´
e,
R., Kovacs, T., and Franks, N. R. (2009). On
optimal decision-making in brains and social insect
colonies. Journal of the Royal Society, Interface,
6(40):1065—1074.
Martius, G., Nolfi, S., and Herrmann, J. (2008). Emergence
of interaction among adaptive agents. In 10th Interna-
tional Conference on Simulation of Adaptive Behav-
ior, pages 457–466.
Matsui, T. (2019). A study of joint policies considering
bottlenecks and fairness. In Proceedings of the 11th
International Conference on Agents and Artificial In-
telligence, pages 80–90.
Meyer, B. (2017). Optimal information transfer and
stochastic resonance in collective decision making.
Swarm Intelligence, 11:1–24.
Meyer, J. A. and Wilson, S. W. (1991). The Dynamics of
Collective Sorting Robot - Like Ants And Ant - Like
Robots, pages 356–363.
Moore, D. G., Valentini, G., Walker, S. I., and Levin, M.
(2018). Inform: Efficient information-theoretic anal-
ysis of collective behaviors. Frontiers in Robotics and
AI, 5:60.
Mwaffo, V., Butail, S., and Porfiri, M. (2017). Analysis of
pairwise interactions in a maximum likelihood sense
to identify leaders in a group. Frontiers in Robotics
and AI, 4:35.
Nabet, B., Leonard, N., Couzin, I., and Levin, S. (2009).
Dynamics of decision making in animal group mo-
tion. journal of nonlinear science. Proceedings of the
National Academy of Sciences of the United States of
America, 19(4):399–435.
Ortega, P. and Braun, D. (2013). Thermodynamics as a the-
ory of decision-making with information-processing
costs. Royal Society: Mathematical, Physical and En-
gineering Sciences, 469(2153).
Paolo, E. D., Rohde, M., and Iizuka, H. (2008). Sensitivity
to social contingency or stability of interaction? mod-
elling the dynamics of perceptual crossing. New Ideas
in Psychology, 26(2):278–294.
Pezzulo, G. and Levin, M. (2015). Re-membering the body:
applications of computational neuroscience to the top-
down control of regeneration of limbs and other com-
plex organs. Integr. Biol., 7:1487–1517.
Polani, D., Martinetz, T., and Kim, J. T. (2001). An
information-theoretic approach for the quantification
of relevance. 6th European Conference on Advances
in Artificial Life, pages 704–713.
Polani, D., Nehaniv, C., Martinetz, T., and Kim, J. T.
(2006). Relevant information in optimized persistence
vs. progeny strategies. In 10th International Confer-
ence on the Simulation and Synthesis of Living Sys-
tems, pages 337–343. MIT Press.
Polani, D., Sporns, O., and Lungarella, M. (2007). How in-
formation and embodiment shape intelligent informa-
tion processing. In 50 Years of Artificial Intelligence,
pages 99–111.
Roli, A., Ligot, A., and Birattari, M. (2019). Complex-
ity measures: Open questions and novel opportunities
in the automatic design and analysis of robot swarms.
Frontiers in Robotics and AI, 6:130.
Schreiber, T. (2000). Measuring information transfer. Phys.
Rev. Lett., 85(2):461–464.
Shalizi, C. R. and Crutchfield, J. P. (2002). Information bot-
tlenecks, causal states, and statistical relevance bases:
How to represent relevant information in memoryless
transduction. Advances in Complex Systems, (5):91.
Shannon, C. E. (1949). The mathematical theory of com-
munication. The University of Illinois Press, Urbana.
Sperati, V., Trianni, V., and Nolfi, S. (2011). Self-organised
path formation in a swarm of robots. Swarm Intelli-
gence, 5:97–119.
Sutton, R., Precup, D., and Singh, S. (1999). A frame-
work for temporal abstraction in reinforcement learn-
ing. Artificial intelligence, 112(1-2):181–211.
Tishby, N., Pereira, F. C., and Bialek, W. (1999). The
information bottleneck method. In The 37th annual
Allerton Conference on Communication, Control, and
Computing, pages 368–377.
Tishby, N. and Polani, D. (2011). Information theory of de-
cisions and actions. In Cutsuridis, V., Hussain, A., and
Taylor, J., editors, Perception-Action Cycle: Models,
Architecture and Hardware, pages 601–636. Springer.
Touchette, H. and Lloyd, S. (2000). Information-theoretic
limits of control. Phys. Rev. Lett., 84(6):1156–1159.
Valentini, G., Moore, D. G., Hanson, J. R., Pavlic, T. P.,
Pratt, S. C., and Walker, S. I. (2018). Transfer of in-
formation in collective decisions by artificial agents.
Artificial Life Conference Proceedings, (30):641–648.
Walker, S., Cisneros, L., and Davies, P. (2012). Evolution-
ary transitions and top-down causation. 13th Interna-
tional Conference on the Simulation and Synthesis of
Living Systems, pages 283–290.
Walter, W. (1950). An imitation of life. Scientific American,
May:42–45.
Zenil, H., Marshall, J. A. R., and Tegn
´
er, J. (2015). Ap-
proximations of algorithmic and structural complexity
validate cognitive-behavioural experimental results.
CoRR, abs/1509.06338.
Information-theoretic Cost of Decision-making in Joint Action
311