REFERENCES
Abadi et al. (2015). TensorFlow: Large-scale machine
learning on heterogeneous systems. Retrieved from
https://www.tensorflow.org/about/bib
Barreno, M., Nelson, B., Sears, R., Joseph, A., & Tygar, J.
(2006). Can machine learning be secure? ASIACCS
'06.
Biggio, B., Fumera, G., & Roli, F., (2010). Multiple
classifier systems for robust classifier design in
adversarial environments. International Journal of
Machine Learning and Cybernetics, 1, 27-41.
Carlini, N., & Wagner, D., (2017). Towards Evaluating
the Robustness of Neural Networks. 2017 IEEE
Symposium on Security and Privacy (SP), 39-57.
Chollet, F. (2015). keras, Retrieved from
https://github.com/fchollet/keras.
Goodfellow, I.J., Shlens, J., & Szegedy, C., (2015).
Explaining and Harnessing Adversarial Examples.
CoRR, abs/1412.6572.
Huang, L., Joseph, A., Nelson, B., Rubinstein, B.I., &
Tygar, J., (2011). Adversarial machine learning. In
Proceedings of the 4th ACM workshop on Security
and artificial intelligence, 43–58.
Javaid, A., Niyaz, Q., Sun, W., & Alam, M., (2016). A
Deep Learning Approach for Network Intrusion
Detection System. EAI Endorsed Trans. Security
Safety.
Koroniotis, N., Moustafa, N., Sitnikova, E., & Turnbull,
B., (2019). Towards the Development of Realistic
Botnet Dataset in the Internet of Things for Network
Forensic Analytics: Bot-IoT Dataset. Future Gener.
Comput. Syst., 100, 779-796.
Martins, N., (2019). Analyzing the footprint of classifiers
in adversarial DoS contexts. Proc. EPIA Conf. Artif.
Intell, pp. 256–267.
Martins, N., Cruz, J.M., Cruz, T., & Abreu, P.H., (2020).
Adversarial Machine Learning Applied to Intrusion
and Malware Scenarios: A Systematic Review. IEEE
Access, 8, 35403-35419.
Moustafa, N., & Slay, J., (2015). UNSW-NB15: a
comprehensive data set for network intrusion detection
systems (UNSW-NB15 network data set). 2015
Military Communications and Information Systems
Conference (MilCIS), 1-6.
Moustafa, N., & Slay, J., (2016). The evaluation of
Network Anomaly Detection Systems: Statistical
analysis of the UNSW-NB15 data set and the
comparison with the KDD99 data set. Information
Security Journal: A Global Perspective, 25, 18 - 31.
Othman, S.M., Ba-Alwi, F., Alsohybe, N.T., & Al-
Hashida, A.Y., (2018). Intrusion detection model
using machine learning algorithm on Big Data
environment. Journal of Big Data, 5, 1-12.
Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik,
Z.Y., & Swami, A., (2016). The Limitations of Deep
Learning in Adversarial Settings. 2016 IEEE
European Symposium on Security and Privacy
(EuroS&P), 372-387.
Papernot et al. (2017). Cleverhans v2.0.0: an adversarial
machine learning library. arXiv:1610.00768v4
Pedregosa et al., (2011). Scikit-learn: Machine Learning in
Python, JMLR 12: 2825-2830.
Rigaki, M., Elragal, A., (2017). Adversarial Deep
Learning against Intrusion Detection Classifiers. ST-
152 Workshop on Intelligent Autonomous Agents for
Cyber Defence and Resilience.
Ring, M., Wunderlich, S., Grüdl, D., Dieter Landes, D., &
Hotho, A., (2017). Flow-based benchmark data sets
for intrusion detection. European Conference on
Cyber Warfare and Security (ECCWS), ACPI, 361–
369.
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I.J., & Fergus, R., (2014). Intriguing
properties of neural networks. CoRR, abs/1312.6199.
Tan, T., Lester, J. & Shokri, R., (2020). Bypassing
Backdoor Detection Algorithms in Deep Learning.
IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 175-183.
Wang, Z., (2018). Deep learning-based intrusion detection
with adversaries. IEEE Access 6 38367-38384.
Warzynski, A., & Kolaczek, G., (2018). Intrusion
detection systems vulnerability on adversarial
examples. 2018 Innovations in Intelligent Systems and
Applications (INISTA), 1-4.
Yang, K., Liu, J., Zhang, C., & Fang, Y., (2018).
Adversarial Examples Against the Deep Learning
Based Network Intrusion Detection
Systems. MILCOM 2018 - 2018 IEEE Military
Communications Conference (MILCOM), 559-564.
Yuan, X., He, P., Zhu, Q., & Li, X., (2019). Adversarial
Examples: Attacks and Defenses for Deep
Learning. IEEE Transactions on Neural Networks and
Learning Systems, 30, 2805-2824.