Kalsi, S., Kaur, H., and Chang, V. (2018). Dna cryp-
tography and deep learning using genetic algorithm
with nw algorithm for key generation. J. Med. Syst.,
42(1):112.
kerasunet code (2019). Helper package with multiple
u-net implementations in keras. https://github.com/
karolzak/keras-unet. Accessed: 2020-06-10.
Laredo, D., Qin, Y., Schtze, O., and Sun, J.-Q. (2019). Au-
tomatic model selection for neural networks.
Li, Q., Feng, B., Xie, L., Liang, P., Zhang, H., and Wang, T.
(2015). A cross-modality learning approach for vessel
segmentation in retinal images. IEEE transactions on
medical imaging, 35(1):109–118.
Liskowski, P. and Krawiec, K. (2016). Segmenting retinal
blood vessels with deep neural networks. IEEE trans-
actions on medical imaging, 35(11):2369–2380.
Liu, N., Li, H., Zhang, M., Jing Liu, Sun, Z., and Tan, T.
(2016). Accurate iris segmentation in non-cooperative
environments using fully convolutional networks. In
2016 International Conference on Biometrics (ICB),
pages 1–8.
Melin
ˇ
s
ˇ
cak, M., Prenta
ˇ
si
´
c, P., and Lon
ˇ
cari
´
c, S. (2015). Reti-
nal vessel segmentation using deep neural networks.
In 10th International Conference on Computer Vision
Theory and Applications (VISAPP 2015).
Moccia, S., Momi], E. D., Hadji], S. E., and Mattos, L. S.
(2018). Blood vessel segmentation algorithms review
of methods, datasets and evaluation metrics. Com-
puter Methods and Programs in Biomedicine, 158:71
– 91.
Montana, D. J. and Davis, L. (1989). Training feedforward
neural networks using genetic algorithms. In Pro-
ceedings of the 11th International Joint Conference
on Artificial Intelligence - Volume 1, IJCAI’89, page
762767, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.
Ogurtsova, K., da Rocha Fernandes, J., Huang, Y., Lin-
nenkamp, U., Guariguata, L., Cho, N. H., Cavan, D.,
Shaw, J., and Makaroff, L. (2017). Idf diabetes at-
las: Global estimates for the prevalence of diabetes
for 2015 and 2040. Diabetes research and clinical
practice, 128:40–50.
Osareh, A. and Shadgar, B. (2009). Automatic blood ves-
sel segmentation in color images of retina. SCI-
ENCE AND TECHNOLOGY TRANSACTION B-
ENGINEERING.
Parikh, Y., Chaskar, U., and Khakole, H. (2014). Effec-
tive approach for iris localization in nonideal imaging
conditions. In Proceedings of the 2014 IEEE Students’
Technology Symposium, pages 239–246.
Popat, V., Mahdinejad, M., Dalmau Cedeo, O. S., Naredo,
E., and Ryan, C. (2020). Ga-based u-net architecture
optimization applied to retina blood vessel segmenta-
tion. In ECTA-2020 part of IJCCI, 12th International
Joint Conference on Computational Intelligence.
Ronneberger, O., Fischer, P., and Brox, T. (2015a). U-
net: Convolutional networks for biomedical image
segmentation. CoRR, abs/1505.04597.
Ronneberger, O., Fischer, P., and Brox, T. (2015b). U-
net: Convolutional networks for biomedical image
segmentation. In Navab, N., Hornegger, J., Wells,
W. M., and Frangi, A. F., editors, Medical Image Com-
puting and Computer-Assisted Intervention MICCAI
2015, volume 9351 of Lecture Notes in Computer Sci-
enc, pages 234–241, Munich, Germany. Springer In-
ternational Publishing.
Roy, D. A. and Soni, U. S. (2016). Iris segmentation us-
ing daughman’s method. In 2016 International Con-
ference on Electrical, Electronics, and Optimization
Techniques (ICEEOT), pages 2668–2676.
Roychowdhury, S., Koozekanani, D. D., and Parhi, K. K.
(2014). Blood vessel segmentation of fundus images
by major vessel extraction and subimage classifica-
tion. IEEE journal of biomedical and health infor-
matics, 19(3):1118–1128.
Soares, J. V., Leandro, J. J., Cesar, R. M., Jelinek, H. F., and
Cree, M. J. (2006). Retinal vessel segmentation using
the 2-d gabor wavelet and supervised classification.
IEEE Transactions on medical Imaging, 25(9):1214–
1222.
Sun, Y., Xue, B., Zhang, M., Yen, G. G., and Lv, J.
(2020). Automatically designing cnn architectures
using the genetic algorithm for image classification.
IEEE Transactions on Cybernetics, 50(9):38403854.
Unet-code (2019). Implementation of deep learning frame-
work unet, using keras. https://github.com/zhixuhao/
unet. Accessed: 2020-04-15.
Vision, S. (2020). Diagnosing and treating diabetic
retinopathy in dallas. https://salandvision.com/
eye-conditions/diabetic-retinopathy/. [Online; ac-
cessed 20-June-2020].
Xiancheng, W., Wei, L., Bingyi, M., He, J., Jiang, Z.,
Xu, W., Ji, Z., Hong, G., and Zhaomeng, S. (2018).
Retina blood vessel segmentation using a u-net based
convolutional neural network. In Procedia Computer
Science: International Conference on Data Science
(ICDS 2018), Beijing, China, pages 8–9.
Xingjian, S., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-
K., and Woo, W.-c. (2015). Convolutional lstm net-
work: A machine learning approach for precipitation
nowcasting. In Advances in neural information pro-
cessing systems, pages 802–810.
ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence
256