Conference on Informatics in Control, Automation and
Robotics. https://doi.org/10.5220/0007916705070516
Alexandrov, A. V. A. V., Lippi, V., Mergner, T., Frolov, A.
A. A. A., Hettich, G., & Husek, D. (2017). Human-
inspired Eigenmovement concept provides coupling-
free sensorimotor control in humanoid robot. Frontiers
in Neurorobotics, 11(APR). https://doi.org/10.3389/
fnbot.2017.00022
Boonstra, T. A., van Vugt, J. P. P., van der Kooij, H., &
Bloem, B. R. (2014). Balance asymmetry in
Parkinson’s disease and its contribution to freezing of
gait. PLoS One, 9(7), e102493.
Calinon, S. (2016). A tutorial on task-parameterized
movement learning and retrieval. Intelligent Service
Robotics. https://doi.org/10.1007/s11370-015-0187-9
Calinon, S., Guenter, F., & Billard, A. (2007). On learning,
representing, and generalizing a task in a humanoid
robot. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics. https://doi.org/
10.1109/TSMCB.2006.886952
Costa, L., Gago, M. F., Yelshyna, D., Ferreira, J., Silva, H.
D., Rocha, L., Sousa, N., & Bicho, E. (2016).
Application of Machine Learning in Postural Control
Kinematics for the Diagnosis of Alzheimer’s Disease.
Computational Intelligence and Neuroscience.
https://doi.org/10.1155/2016/3891253
Deimel, R. (2019a). A Dynamical System for Governing
Continuous, Sequential and Reactive Behaviors.
Proceedings of the Austrian Robotics Workshop.
Deimel, R. (2019b). Reactive Interaction Through Body
Motion and the Phase-State-Machine. IEEE
International Conference on Intelligent Robots and
Systems.
https://doi.org/10.1109/IROS40897.2019.8968557
Engelhart, D., Pasma, J. H., Schouten, A. C., Meskers, C.
G. M., Maier, A. B., Mergner, T., & van der Kooij, H.
(2014). Impaired standing balance in elderly: a new
engineering method helps to unravel causes and effects.
Journal of the American Medical Directors
Association, 15(3), 227--e1.
Exarchos, T. P., Bellos, C., Bakola, I., Kikidis, D., Bibas,
A., Koutsouris, D., & Fotiadi, D. I. (2015).
Management and modeling of balance disorders using
decision support systems: The EMBALANCE project.
Advances in Experimental Medicine and Biology.
https://doi.org/10.1007/978-3-319-09012-2_4
Godoy, J. C., Campos, I. J., Pérez, L. M., & Muñoz, L. R.
(2018). Nonanthropomorphic exoskeleton with legs
based on eight-bar linkages. International Journal of
Advanced Robotic Systems. https://doi.org/10.1177/
1729881418755770
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep
Learning. MIT Press.
Goodworth, A. D., & Peterka, R. J. (2018). Identifying
mechanisms of stance control: a single stimulus
multiple output model-fit approach. Journal of
Neuroscience Methods, 296, 44–56.
Hastie, T., & Tibshirani, R. (2004). Efficient quadratic
regularization for expression arrays. Biostatistics.
https://doi.org/10.1093/biostatistics/kxh010
Jafari, H., Nikolakopoulos, G., & Gustafsson, T. (2019).
Stabilization of an inverted pendulum via human brain
inspired controller design. IEEE-RAS International
Conference on Humanoid Robots. https://doi.org/
10.1109/Humanoids43949.2019.9035019
Lee, H., Kim, H. J., & Park, J. (2018). Control of a
nonanthropomorphic exoskeleton for multi-joint
assistance by contact force generation. International
Journal of Advanced Robotic Systems.
https://doi.org/10.1177/1729881418782098
Lippi, V. (2018). Prediction in the context of a human-
inspired posture control model. Robotics and
Autonomous Systems. https://doi.org/10.1016/
j.robot.2018.05.012
Lippi, V., & Mergner, T. (2017). Human-derived
disturbance estimation and compensation (DEC)
method lends itself to a modular sensorimotor control
in a humanoid robot. Frontiers in Neurorobotics,
11(SEP). https://doi.org/10.3389/fnbot.2017.00049
Lippi, V., Mergner, T., & Maurer, C. (2020). Deep
Learning for Posture Control Nonlinear Model System
and Noise Identification. Proceedings of the 17th
International Conference on Informatics in Control,
Automation and Robotics - Volume 1: ICINCO,.
Lippi, V., Mergner, T., Seel, T., & Maurer, C. (2019).
COMTEST Project: A Complete Modular Test Stand
for Human and Humanoid Posture Control and
Balance. IEEE-RAS International Conference on
Humanoid Robots. https://doi.org/10.1109/Humanoids
43949.2019.9035081
Makondo, N., Rosman, B., & Hasegawa, O. (2015).
Knowledge transfer for learning robot models via Local
Procrustes Analysis. IEEE-RAS International
Conference on Humanoid Robots. https://doi.org/
10.1109/HUMANOIDS.2015.7363502
Mergner, T. (2010). A neurological view on reactive human
stance control. Annual Reviews in Control, 34(2), 177–
198. https://doi.org/10.1016/j.arcontrol.2010.08.001
Mergner, T., Maurer, C., & Peterka, R. J. (2003). A
multisensory posture control model of human upright
stance. Progress in Brain Research, 142, 189–201.
Ott, C., Henze, B., Hettich, G., Seyde, T. N., Roa, M. A.,
Lippi, V., & Mergner, T. (2016). Good Posture, Good
Balance: Comparison of Bioinspired and Model-Based
Approaches for Posture Control of Humanoid Robots.
IEEE Robotics & Automation Magazine, 23(1), 22–33.
https://doi.org/10.1109/MRA.2015.2507098
Paraschos, A., Daniel, C., Peters, J., & Neumann, G.
(2013). Probabilistic movement primitives. Advances in
Neural Information Processing Systems.
Pasma, J. H., Engelhart, D., Schouten, A. C., der Kooij, H.,
Maier, A. B., & Meskers, C. G. M. (2014). Impaired
standing balance: the clinical need for closing the loop.
Neuroscience, 267, 157–165.
Phaniteja, S., Dewangan, P., Guhan, P., Sarkar, A., &
Krishna, K. M. (2018). A deep reinforcement learning
approach for dynamically stable inverse kinematics of
humanoid robots.
2017 IEEE International Conference
on Robotics and Biomimetics, ROBIO 2017.
https://doi.org/10.1109/ROBIO.2017.8324682