Figure 5: Evolution of the federated model on 26434 code
snippets over 15 rounds of federated learning, broken down
by client.
ACKNOWLEDGEMENTS
Many thanks to the creators of the Credential Digger,
Dr. Marco Rosa, Sofiane Lounici, Carlo Negri and
Jarod Cajna at SAP Labs, and to Prof. Boi Faltings at
EPFL.
REFERENCES
Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Ben-
nis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z.,
Cormode, G., Cummings, R., D’Oliveira, R. G. L.,
Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z.,
Gasc
´
on, A., Ghazi, B., Gibbons, P. B., Gruteser, M.,
Harchaoui, Z., He, C., He, L., Huo, Z., Hutchinson,
B., Hsu, J., Jaggi, M., Javidi, T., Joshi, G., Kho-
dak, M., Kone
ˇ
cn
´
y, J., Korolova, A., Koushanfar, F.,
Koyejo, S., Lepoint, T., Liu, Y., Mittal, P., Mohri, M.,
Nock, R.,
¨
Ozg
¨
ur, A., Pagh, R., Raykova, M., Qi, H.,
Ramage, D., Raskar, R., Song, D., Song, W., Stich,
S. U., Sun, Z., Suresh, A. T., Tram
`
er, F., Vepakomma,
P., Wang, J., Xiong, L., Xu, Z., Yang, Q., Yu, F. X., Yu,
H., and Zhao, S. (2019). Advances and open problems
in federated learning.
Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020).
Federated learning: Challenges, methods, and fu-
ture directions. IEEE Signal Processing Magazine,
37(3):50–60.
Mansour, Y., Mohri, M., Ro, J., and Suresh, A. (2020).
Three approaches for personalization with applica-
tions to federated learning.
McMahan, H. B., Moore, E., Ramage, D., Hampson, S.,
and y Arcas, B. A. (2017). Communication-efficient
learning of deep networks from decentralized data. In
AISTATS.
Meli, M., McNiece, M. R., and Reaves, B. (2019). How
bad can it git? characterizing secret leakage in public
github repositories. In NDSS.
Sahu, A. K., Li, T., Sanjabi, M., Zaheer, M., Talwalkar, A.,
and Smith, V. (2018). On the convergence of feder-
ated optimization in heterogeneous networks. CoRR,
abs/1812.06127.
Sprague, M. R., Jalalirad, A., Scavuzzo, M., Capota, C.,
Neun, M., Do, L., and Kopp, M. (2019). Asyn-
chronous federated learning for geospatial applica-
tions. In Monreale, A., Alzate, C., Kamp, M., Kr-
ishnamurthy, Y., Paurat, D., Sayed-Mouchaweh, M.,
Bifet, A., Gama, J., and Ribeiro, R. P., editors,
ECML PKDD 2018 Workshops, pages 21–28, Cham.
Springer International Publishing.
Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., and
Khazaeni, Y. (2020). Federated learning with matched
averaging.
Wang, K., Mathews, R., Kiddon, C., Eichner, H., Beaufays,
F., and Ramage, D. (2019). Federated evaluation of
on-device personalization. ArXiv, abs/1910.10252.
Xie, C., Koyejo, S., and Gupta, I. (2019). Asynchronous
federated optimization. CoRR, abs/1903.03934.
Yang, Q., Liu, Y., Chen, T., and Tong, Y. (2019). Federated
machine learning: Concept and applications. ACM
Trans. Intell. Syst. Technol., 10(2).
Yang, T., Andrew, G., Eichner, H., Sun, H., Li, W., Kong,
N., Ramage, D., and Beaufays, F. (2018). Applied
federated learning: Improving google keyboard query
suggestions.
Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K.,
Hoang, N., and Khazaeni, Y. (2019). Bayesian non-
parametric federated learning of neural networks. In
Chaudhuri, K. and Salakhutdinov, R., editors, Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 7252–7261, Long Beach,
California, USA. PMLR.
An Asynchronous Federated Learning Approach for a Security Source Code Scanner
579