Autoencoder Watchdog Outlier Detection for Classifiers
Justin Bui, Robert Marks II
2021
Abstract
Neural networks have often been described as black boxes. A generic neural network trained to differentiate between kittens and puppies will classify a picture of a kumquat as a kitten or a puppy. An autoencoder watchdog screens trained classifier/regression machine input candidates before processing, e.g. to first test whether the neural network input is a puppy or a kitten. Preliminary results are presented using convolutional neural networks and convolutional autoencoder watchdogs using MNIST images.
DownloadPaper Citation
in Harvard Style
Bui J. and Marks II R. (2021). Autoencoder Watchdog Outlier Detection for Classifiers.In Proceedings of the 13th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-484-8, pages 990-996. DOI: 10.5220/0010300509900996
in Bibtex Style
@conference{icaart21,
author={Justin Bui and Robert Marks II},
title={Autoencoder Watchdog Outlier Detection for Classifiers},
booktitle={Proceedings of the 13th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2021},
pages={990-996},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010300509900996},
isbn={978-989-758-484-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 13th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Autoencoder Watchdog Outlier Detection for Classifiers
SN - 978-989-758-484-8
AU - Bui J.
AU - Marks II R.
PY - 2021
SP - 990
EP - 996
DO - 10.5220/0010300509900996