Keuper, M., Tang, S., Andres, B., Brox, T., & Schiele, B.
(2018). Motion Segmentation & Multiple Object
Tracking by Correlation Co-Clustering. IEEE
Transactions on Pattern Analysis and Machine
Intelligence.
Kim, C., Li, F., Ciptadi, A., & Rehg, J. M. (2015). Multiple
hypothesis tracking revisited. Proceedings of the IEEE
International Conference on Computer Vision.
Kim, W., & Jung, C. (2017). Illumination-Invariant
Background Subtraction: Comparative Review,
Models, and Prospects. In IEEE Access.
Leal-Taixé, L., Milan, A., Reid, I., Roth, S., & Schindler,
K. (2015). MOT challenge 2015: towards a benchmark
for multi-target tracking. Unpublished.
Li, Y., Huang, C., & Nevatia, R. (2009). Learning to
associate: Hybridboosted multi-target tracker for
crowded scene. IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2953–2960.
Lucas, B. D., & Kanade, T. (1981). An Iterative Image
Registration Technique with an Application to Stereo
Vision. Proceedings from the 7th IJCAI, 674–679.
MATLAB 2020b. (2020a). Motion-Based Multiple Object
Tracking. Mathworks Inc.
https://www.mathworks.com/help/vision/ug/motion-
based-multiple-object-tracking.html
MATLAB 2020b. (2020b). vision.ForegroundDetector.
Mathworks Inc.
https://www.mathworks.com/help/vision/ref/vision.for
egrounddetector-system-object.html
Migliore, D. A., Matteucci, M., & Naccari, M. (2006). A
revaluation of frame difference in fast and robust
motion detection. Proceedings of the ACM
International Multimedia Conference and Exhibition.
Milan, A., Leal-Taixé, L., Reid, I., Roth, S., & Schindler,
K. (2016). MOT16: a benchmark for multi-object
tracking. Unpublished.
Munkres, J. (1957). Algorithms for the Assignment and
Transportation Problems. Journal of the Society for
Industrial and Applied Mathematics, 5(1), 32–38.
Oh, S., Hoogs, A., Perera, A., Cuntoor, N., Chen, C. C.,
Lee, J. T., Mukherjee, S., Aggarwal, J. K., Lee, H.,
Davis, L., Swears, E., Wang, X., Ji, Q., Reddy, K.,
Shah, M., Vondrick, C., Pirsiavash, H., Ramanan, D.,
Yuen, J., … Desai, M. (2011). A large-scale benchmark
dataset for event recognition in surveillance video.
IEEE Conference on Computer Vision and Pattern
Recognition, 3153–3160.
Perera, A. G. A., Srinivas, C., Hoogs, A., Brooksby, G., &
Hu, W. (2006). Multi-object tracking through
simultaneous long occlusions and split-merge
conditions. IEEE Conference on Computer Vision and
Pattern Recognition, 666–673.
Pirsiavash, H., Ramanan, D., & Fowlkes, C. C. (2011).
Globally-optimal greedy algorithms for tracking a
variable number of objects. IEEE Conference on
Computer Vision and Pattern Recognition, 1201–1208.
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016).
You only look once: Unified, real-time object detection.
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 779–788.
Reid, D. B. (1979). An Algorithm for Tracking Multiple
Targets. IEEE Transactions on Automatic Control.
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-
CNN: Towards real-time object detection with region
proposal networks. Advances in Neural Information
Processing Systems (NIPS).
Rezatofighi, S. H., Milan, A., Zhang, Z., Shi, Q., Dick, A.,
& Reid, I. (2015). Joint probabilistic data association
revisited. Proceedings of the IEEE International
Conference on Computer Vision.
Sadeghi, M. A., & Forsyth, D. (2014). 30Hz object
detection with DPM V5. Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics).
Satopää, V., Albrecht, J., Irwin, D., & Raghavan, B. (2011).
Finding a “kneedle” in a haystack: Detecting knee
points in system behavior. Proceedings - International
Conference on Distributed Computing Systems.
Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X.
(2017). DBSCAN revisited, revisited: Why and how
you should (still) use DBSCAN. ACM Transactions on
Database Systems.
Simonyan, K., & Zisserman, A. (2014). Two-stream
convolutional networks for action recognition in
videos. Advances in Neural Information Processing
Systems.
Singla, N. (2014). Motion Detection Based on Frame
Difference Method. International Journal of
Information & Computation Technology.
Sobral, A., & Vacavant, A. (2014). A comprehensive
review of background subtraction algorithms evaluated
with synthetic and real videos. Computer Vision and
Image Understanding.
Stauffer, C., & Grimson, W. E. L. (1999). Adaptive
background mixture models for real-time tracking.
Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition.
Tang, S., Andres, B., Andriluka, M., & Schiele, B. (2015).
Subgraph decomposition for multi-target tracking.
Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition.
Wen, L., Du, D., Cai, Z., Lei, Z., Chang, M. C., Qi, H., Lim,
J., Yang, M. H., & Lyu, S. (2020). UA-DETRAC: A
new benchmark and protocol for multi-object detection
and tracking. Computer Vision and Image
Understanding, 193.
Wen, L., Li, W., Yan, J., Lei, Z., Yi, D., & Li, S. Z. (2014).
Multiple target tracking based on undirected
hierarchical relation hypergraph. Proceedings of the
IEEE Computer Society Conference on Computer
Vision and Pattern Recognition.
Wren, C. R., Azarbayejani, A., Darrell, T., & Pentland, A.
P. (1997). P finder: real-time tracking of the human
body. IEEE Transactions on Pattern Analysis and
Machine Intelligence.
Zhan, C., Duan, X., Xu, S., Song, Z., & Luo, M. (2007). An
improved moving object detection algorithm based on
frame difference and edge detection. Proceedings of the
4th International Conference on Image and Graphics,
ICIG 2007.
ICPRAM 2021 - 10th International Conference on Pattern Recognition Applications and Methods