ten-ways-autonomous-driving-could-redefine-the/
-automotive-world.
Bertsekas, D. P. and Tsitsiklis, J. N. (1999). Neuro-dynamic
programming. 2te edition.
Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. (2016). Ope-
nai gym. CoRR, abs/1606.01540. http://arxiv.org/abs/
1606.01540.
Dohmen, J., Liessner, R., Friebel, C., and B
¨
aker, B. (2019).
LongiControl environment for OpenAI gym. https:
//github.com/dynamik1703/gym-longicontrol.
Freuer, A. (2015). Ein Assistenzsystem f
¨
ur die energetisch
optimierte L
¨
angsf
¨
uhrung eines Elektrofahrzeugs. PhD
thesis.
Gao, J. (2014). Machine learning applications for data cen-
ter optimization.
Gr
¨
undl, M. (2005). Fehler und Fehlverhalten als Ur-
sache von Verkehrsunf
¨
allen und Konsequenzen f
¨
ur
das Unfallvermeidungspotenzial und die Gestaltung
von Fahrerassistenzsystemen. PhD thesis, University
Regensburg.
Gu, S., Lillicrap, T. P., Ghahramani, Z., Turner, R. E.,
and Levine, S. (2016). Q-prop: Sample-efficient
policy gradient with an off-policy critic. CoRR,
abs/1611.02247. http://arxiv.org/abs/1611.02247.
Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
and Levine, S. (2018). Soft actor-critic algorithms and
applications. CoRR, abs/1812.05905. http://arxiv.org/
abs/1812.05905.
Hinssen, P. and Abbeel, P. (2018). Everything is going
to be touched by ai. https://nexxworks.com/blog/
everything-is-going-to-be-touched-by-ai-interview.
Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing inter-
nal covariate shift. CoRR. http://arxiv.org/abs/1502.
03167.
Isermann, R. (2008). Mechatronische Systeme - Grundla-
gen. Springer-Verlag, Berlin Heidelberg, 2 edition.
Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D.,
Allen, J., Lam, V., Bewley, A., and Shah, A. (2018).
Learning to drive in a day. CoRR, abs/1807.00412.
http://arxiv.org/abs/1807.00412.
Liessner, R., Schroer, C., Dietermann, A., and B
¨
aker, B.
(2018). Deep reinforcement learning for advanced
energy management of hybrid electric vehicles. In
Proceedings of the 10th International Conference on
Agents and Artificial Intelligence ICAART,, volume 2,
pages 61–72.
Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. (2015). Contin-
uous control with deep reinforcement learning. CoRR,
abs/1509.02971. http://arxiv.org/abs/1509.02971.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. A.
(2013). Playing atari with deep reinforcement learn-
ing. CoRR, abs/1312.5602. http://arxiv.org/abs/1312.
5602.
Pontryagin, L. S., Boltyanshii, V. G., Gamkrelidze, R. V.,
and Mishenko, E. F. (1962). The Mathematical The-
ory of Optimal Processes. John Wiley and Sons, New
York.
Radke, T. (2013). Energieoptimale L
¨
angsf
¨
uhrung von
Kraftfahrzeugen durch Einsatz vorausschauender
Fahrstrategien. PhD thesis, Karlsruhe Institute of
Technology (KIT).
Sallab, A., Abdou, M., Perot, E., and Yogamani, S.
(2017). Deep reinforcement learning framework for
autonomous driving. Electronic Imaging, 2017:70–
76.
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization al-
gorithms. CoRR, abs/1707.06347. http://arxiv.org/
abs/1707.06347.
Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learn-
ing: An Introduction. MIT Press, Cambridge, MA,
USA, 2te edition.
Uebel, S. (2018). Eine im Hybridfahrzeug einset-
zbare Energiemanagementstrategie mit effizienter
L
¨
angsf
¨
uhrung. PhD thesis.
Winner, H., Hakuli, S., Lotz, F., and Singer, C., ed-
itors (2015). Handbuch Fahrerassistenzsysteme.
ATZ/MTZ-Fachbuch. Springer Vieweg, Wiesbaden, 3
edition.
Winner, H. and Wachenfeld, W. (2015). Auswirkungen des
autonomen fahrens auf das fahrzeugkonzept.
Ye, Z., Plum, T., Pischinger, S., Andert, J., Stapelbroek,
M. F., and Pfluger, J.-S. R. (2017). Vehicle speed tra-
jectory optimization under limits in time and spatial
domains. In International ATZ Conference Automated
Driving, volume 3, Wiesbaden.
LongiControl: A Reinforcement Learning Environment for Longitudinal Vehicle Control
1037