Table 1: Decision-making model evaluation.
Data augmentation rate (R%) Performance (%) Robustness (%) Efficiency (%)
No augmentation 85.03 96.47 90.39
10 90.59 96.49 93.45
20 92.11 95.55 93.80
30 92.11 94.62 93.35
40 91.63 95.40 93.47
50 93.03 94.09 93.56
60 92.36 94.70 93.52
70 91.32 93.97 92.63
80 91.87 94.94 93.38
90 90.89 96.43 93.58
100 91.50 96.06 93.72
REFERENCES
Abdessemed, F. (2012). Svm-based control system for a
robot manipulator. International Journal of Advanced
Robotic Systems, 9(6):247.
Aleluya, E. R., D. Zamayla, A., and Lyle M. Tamula, S.
(2018). Decision-making system of soccer-playing
robots using finite state machine based on skill hier-
archy and path planning through bezier polynomials.
Procedia Computer Science, 135:230–237.
Chinchor, N. (1992). Muc-4 evaluation metrics. In In Pro-
ceedings of the Fourth Message Understanding Con-
ference, pages 22–29.
Cousot, P. (2008). The Verification Grand Challenge and
Abstract Interpretation, pages 189–201. Springer
Berlin Heidelberg, Berlin, Heidelberg.
Ehlers, R. (2017). Formal verification of piece-
wise linear feed-forward neural networks. CoRR,
abs/1705.01320.
Ehrgott, M. (2005). Multicriteria optimization.
Freire, A. L., Barreto, G. A., Veloso, M., and Varela, A. T.
(2009). Short-term memory mechanisms in neural
network learning of robot navigation tasks: A case
study. In 2009 6th Latin American Robotics Sympo-
sium, pages 1–6.
Gallardo, N., Gamez, N., Rad, P., and Jamshidi, M. (2017).
Autonomous decision making for a driver-less car. In
2017 12th System of Systems Engineering Conference
(SoSE), pages 1–6.
Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P.,
Chaudhuri, S., and Vechev, M. (2018). Ai2: Safety
and robustness certification of neural networks with
abstract interpretation. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 3–18.
Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P.,
Chaudhuri, S., and Vechev, M. (2018). Ai2: Safety
and robustness certification of neural networks with
abstract interpretation. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 3–18.
Hoel, C., Wolff, K., and Laine, L. (2018). Automated
speed and lane change decision making using deep re-
inforcement learning. CoRR, abs/1803.10056.
Jmila, H., Ibn Khedher, M., Blanc, G., and El Yacoubi,
M. A. (2019). Siamese network based feature learn-
ing for improved intrusion detection. In Gedeon, T.,
Wong, K. W., and Lee, M., editors, Neural Informa-
tion Processing, pages 377–389, Cham. Springer In-
ternational Publishing.
Jmila, H., Khedher, M. I., and El-Yacoubi, M. A. (2017).
Estimating VNF resource requirements using machine
learning techniques. In Liu, D., Xie, S., Li, Y., Zhao,
D., and El-Alfy, E. M., editors, Neural Information
Processing - 24th International Conference, ICONIP
2017, Guangzhou, China, November 14-18, 2017,
Proceedings, Part I, volume 10634 of Lecture Notes
in Computer Science, pages 883–892. Springer.
Kammel, S., Ziegler, J., Pitzer, B., Werling, M., Gindele,
T., Jagzent, D., Schöder, J., Thuy, M., Goebl, M., von
Hundelshausen, F., Pink, O., Frese, C., and Stiller, C.
(2009). Team AnnieWAY’s Autonomous System for
the DARPA Urban Challenge 2007, pages 359–391.
Springer Berlin Heidelberg, Berlin, Heidelberg.
Katz, G., Barrett, C. W., Dill, D. L., Julian, K., and Kochen-
derfer, M. J. (2017). Reluplex: An efficient SMT
solver for verifying deep neural networks. CoRR,
abs/1702.01135.
Khedher, M. I. and El Yacoubi, M. A. (2015). Local sparse
representation based interest point matching for per-
son re-identification. In Arik, S., Huang, T., Lai,
W. K., and Liu, Q., editors, Neural Information Pro-
cessing, pages 241–250, Cham. Springer International
Publishing.
Khedher, M. I., El-Yacoubi, M. A., and Dorizzi, B. (2012).
Probabilistic matching pair selection for surf-based
person re-identification. In 2012 BIOSIG - Proceed-
ings of the International Conference of Biometrics
Special Interest Group (BIOSIG), pages 1–6.
Khedher, M. I., Jmila, H., and Yacoubi, M. A. E. (2018).
Fusion of interest point/image based descriptors for
efficient person re-identification. In 2018 Interna-
tional Joint Conference on Neural Networks (IJCNN),
pages 1–7.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in Neural Information Pro-
ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence
1112