work is a part of the project EPI project (EPI for “AI-
based Decision Making Systems’ Performance Eval-
uation”).
REFERENCES
Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., and Li,
J. (2018). Boosting adversarial attacks with momen-
tum. CoRR, 1710.06081v3.
Freire, A. L., Barreto, G. A., Veloso, M., and Varela, A. T.
(2009). Short-term memory mechanisms in neural
network learning of robot navigation tasks: A case
study. In 2009 6th Latin American Robotics Sym-
posium, pages 1–6.
Goodfellow, I., Shlens, J., and Szegedy, C. (2015a). Ex-
plaining and harnessing adversarial examples. In In-
ternational Conference on Learning Representations.
Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015b). Ex-
plaining and harnessing adversarial examples. ICLR,
1412.6572v3.
Jmila, H., Khedher, M. I., Blanc, G., and El-Yacoubi,
M. A. (2019). Siamese network based feature learn-
ing for improved intrusion detection. In Gedeon, T.,
Wong, K. W., and Lee, M., editors, Neural Infor-
mation Processing - 26th International Conference,
ICONIP 2019, Sydney, NSW, Australia, December
12-15, 2019, Proceedings, Part I, volume 11953 of
Lecture Notes in Computer Science, pages 377–389.
Springer.
Jmila, H., Khedher, M. I., and El-Yacoubi, M. A. (2017).
Estimating VNF resource requirements using machine
learning techniques. In Liu, D., Xie, S., Li, Y., Zhao,
D., and El-Alfy, E. M., editors, Neural Information
Processing - 24th International Conference, ICONIP
2017, Guangzhou, China, November 14-18, 2017,
Proceedings, Part I, volume 10634 of Lecture Notes
in Computer Science, pages 883–892. Springer.
Khedher, M. I. and El Yacoubi, M. A. (2015). Local sparse
representation based interest point matching for per-
son re-identification. In Arik, S., Huang, T., Lai,
W. K., and Liu, Q., editors, Neural Information Pro-
cessing, pages 241–250, Cham. Springer International
Publishing.
Khedher, M. I., El-Yacoubi, M. A., and Dorizzi, B. (2012).
Probabilistic matching pair selection for surf-based
person re-identification. In 2012 BIOSIG - Proceed-
ings of the International Conference of Biometrics
Special Interest Group (BIOSIG), pages 1–6.
Khedher, M. I., Jmila, H., and Yacoubi, M. A. E. (2018).
Fusion of interest point/image based descriptors for
efficient person re-identification. In 2018 Interna-
tional Joint Conference on Neural Networks (IJCNN),
pages 1–7.
Kurabin, A., Goodfellow, I. J., and Bengio, S. (2017). Ad-
versarial examples in the physical world. ICLR,
1607.02533v4.
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. (2017). Towards deep learning models re-
sistant to adversarial attacks. 1706.06083v3.
Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P.
(2015). Deepfool : a simple and accurate method to
fool deep neural networks. CoRR, 1511.04599.
Okuyama, T., Gonsalves, T., and Upadhay, J. (2018). Au-
tonomous driving system based on deep q-learning.
In 2018 International Conference on Intelligent Au-
tonomous Systems (ICoIAS), pages 201–205.
Papernot, N., McDaniel, P., Jha, S., Fredrikson, M.,
Berkay Celik, Z., , and Swami, A. (2015). The limi-
tations of deep learning in adversarial settings. IEEE,
1511.07528v1.
Ruiz-del-Solar, J., Loncomilla, P., and Soto, N. (2018).
A survey on deep learning methods for robot vision.
CoRR, abs/1803.10862.
Shrestha, A. and Mahmood, A. (2019). Review of deep
learning algorithms and architectures. IEEE Access,
7:53040–53065.
Spille, C., Ewert, S. D., Kollmeier, B., and Meyer, B. T.
(2018). Predicting speech intelligibility with deep
neural networks. Comput. Speech Lang., 48:51–66.
Yuan, X., He, P., Zhu, Q., and Li, X. (2019). Adversar-
ial examples: Attacks and defenses for deep learning.
IEEE Transactions on Neural Networks and Learning
Systems, 30(9):2805–2824.
Zantedeschi, V., Nicolae, M., and Rawat, A. (2017). Ef-
ficient defenses against adversarial attacks. CoRR,
abs/1707.06728.
Analyzing Adversarial Attacks against Deep Learning for Robot Navigation
1121