Environment, 126, 98–106. https://doi.org/10.1016/
j.atmosenv.2015.11.054
Fang, C., Cui, X., Li, G., Bao, C., Wang, Z., Ma, H., Sun,
S., Liu, H., Luo, K., & Ren, Y. (2019). Modeling
regional sustainable development scenarios using the
Urbanization and Eco-environment Coupler: Case
study of Beijing-Tianjin-Hebei urban agglomeration,
China. Science of the Total Environment, 689(June),
820–830. https://doi.org/10.1016/j.scitotenv.2019.06.
430
Gabiri, G., Leemhuis, C., Diekkrüger, B., Näschen, K.,
Steinbach, S., & Thonfeld, F. (2019). Modelling the
impact of land use management on water resources in a
tropical inland valley catchment of central Uganda,
East Africa. Science of the Total Environment, 653,
1052–1066. https://doi.org/10.1016/j.scitotenv.2018.1
0.430
Gray, C. L., & Bilsborrow, R. E. (2014). Consequences of
out-migration for land use in rural Ecuador. Land Use
Policy, 36, 182–191. https://doi.org/10.1016/
j.landusepol.2013.07.006
Hof, C., Voskamp, A., Biber, M. F., Böhning-Gaese, K.,
Engelhardt, E. K., Niamir, A., Willis, S. G., & Hickler,
T. (2018). Bioenergy cropland expansion may offset
positive effects of climate change mitigation for global
vertebrate diversity. Proceedings of the National
Academy of Sciences of the United States of America,
115(52), 13294–13299. https://doi.org/10.1073/pnas.1
807745115
Holzhauer, S., Brown, C., & Rounsevell, M. (2019).
Modelling dynamic effects of multi-scale institutions
on land use change. Regional Environmental Change,
19(3), 733–746. https://doi.org/10.1007/s10113-018-
1424-5
Izazola, H., & Jowett, A. (2010). SA NE M SC PL O E – C
EO AP LS TE S PL O E –. II.
Josephat, M. (2018). Deforestation In Uganda: Population
Increase, Forests Loss And Climate Change.
Environmental Risk Assessment and Remediation,
02(02), 46–50. https://doi.org/10.4066/2529-8046.100
040
Kakuru, W., Turyahabwe, N., & Mugisha, J. (2013). Total
economic value of wetlands products and services in
Uganda. The Scientific World Journal, 2013.
https://doi.org/10.1155/2013/192656
Kazerooni, E. A. (2001). Population and sample. American
Journal of Roentgenology, 177(5), 993–999.
https://doi.org/10.2214/ajr.177.5.1770993
Koontz, T. M., Gupta, D., Mudliar, P., & Ranjan, P. (2015).
Adaptive institutions in social-ecological systems
governance: A synthesis framework. Environmental
Science and Policy, 53, 139–151. https://doi.org/
10.1016/j.envsci.2015.01.003
Krause, A., Bayer, A. D., Pugh, T. A. M., Doelman, J. C.,
Humpenöder, F., Anthoni, P., Olin, S., Bodirsky, B. L.,
Popp, A., Stehfest, E., & Arneth, A. (2017). Global
consequences of afforestation and bioenergy cultivation
on ecosystem service indicators. Biogeosciences
Discussions, 1–42. https://doi.org/10.5194/bg-2017-
160
Krejcie, R. V., & Morgan, D. W. (1970). Determining
Sample Size for Research Activities. Educational and
Psychological Measurement, 30(3), 607–610.
https://doi.org/10.1177/001316447003000308
Lawrence, J., Blackett, P., & Cradock-Henry, N. A. (2020).
Cascading climate change impacts and implications.
Climate Risk Management, 29. https://doi.org/10.1016/
j.crm.2020.100234
Lawrence, P. j., Lawrence, D. M., & Hurtt, G. C. (2018).
Attributing the Carbon Cycle Impacts of CMIP5
Historical and Future Land Use and Land Cover
Change in the Community Earth System Model
(CESM1). Journal of Geophysical Research:
Biogeosciences, 123(5), 1732–1755. https://doi.org/
10.1029/2017JG004348
Liu, D., Zheng, X., Zhang, C., & Wang, H. (2017). A new
temporal–spatial dynamics method of simulating land-
use change. Ecological Modelling, 350, 1–10.
https://doi.org/10.1016/j.ecolmodel.2017.02.005
Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y., Li, S.,
Wang, S., & Pei, F. (2017). A future land use simulation
model (FLUS) for simulating multiple land use
scenarios by coupling human and natural effects.
Landscape and Urban Planning, 168(July 2016), 94–
116. https://doi.org/10.1016/j.landurbplan.2017.09.019
Lyle, G. (2015). Understanding the nested, multi-scale,
spatial and hierarchical nature of future climate change
adaptation decision making in agricultural regions: A
narrative literature review. Journal of Rural Studies, 37,
38–49. https://doi.org/10.1016/j.jrurstud.2014.10.004
Molotoks, A., Stehfest, E., Doelman, J., Albanito, F.,
Fitton, N., Dawson, T. P., & Smith, P. (2018). Global
projections of future cropland expansion to 2050 and
direct impacts on biodiversity and carbon storage.
Global Change Biology, 24(12), 5895–5908.
https://doi.org/10.1111/gcb.14459
Mwanjalolo, M. G. J., Bernard, B., Paul, M. I., Joshua, W.,
Sophie, K., Cotilda, N., Bob, N., John, D., Edward, S.,
& Barbara, N. (2018). Assessing the extent of
historical, current, and future land use systems in
Uganda. Land, 7(4), 1–17. https://doi.org/10.3390/
land7040132
Oliva, R. (2003). Model calibration as a testing strategy for
system dynamics models. European Journal of
Operational Research, 151(3), 552–568.
https://doi.org/10.1016/S0377-2217(02)00622-7
Paul, B. K., & Rashid, H. (2017). Land Use Change and
Coastal Management. In Climatic Hazards in Coastal
Bangladesh (pp. 183–207). https://doi.org/10.1016/
b978-0-12-805276-1.00006-5
Pendrill, F., Persson, U. M., Godar, J., & Kastner, T.
(2019). Deforestation displaced: Trade in forest-risk
commodities and the prospects for a global forest
transition. Environmental Research Letters, 14(5).
https://doi.org/10.1088/1748-9326/ab0d41
Rabin, S. S., Alexander, P., Henry, R., Anthoni, P., Pugh,
T. A. M., Rounsevell, M., & Arneth, A. (2020). Impacts
of future agricultural change on ecosystem service
indicators. Earth System Dynamics, 11(2), 357–376.
https://doi.org/10.5194/esd-11-357-2020