research, 16:321–357.
Cho, K., Van Merri
¨
enboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. (2014).
Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078.
Drummond, C., Holte, R. C., et al. (2003). C4. 5, class
imbalance, and cost sensitivity: why under-sampling
beats over-sampling. In Workshop on learning from
imbalanced datasets II, volume 11, pages 1–8. Cite-
seer.
Dua, D. and Graff, C. (2017). UCI machine learning repos-
itory.
Estabrooks, A., Jo, T., and Japkowicz, N. (2004). A multi-
ple resampling method for learning from imbalanced
data sets. Computational intelligence, 20(1):18–36.
Fawcett, T. and Provost, F. (1997). Adaptive fraud de-
tection. Data mining and knowledge discovery,
1(3):291–316.
Han, H., Wang, W.-Y., and Mao, B.-H. (2005). Borderline-
smote: a new over-sampling method in imbalanced
data sets learning. In International conference on in-
telligent computing, pages 878–887. Springer.
He, H., Bai, Y., Garcia, E. A., and Li, S. (2008). Adasyn:
Adaptive synthetic sampling approach for imbal-
anced learning. In Neural Networks, 2008. IJCNN
2008.(IEEE World Congress on Computational In-
telligence). IEEE International Joint Conference on,
pages 1322–1328. IEEE.
Japkowicz, N. et al. (2000). Learning from imbalanced
data sets: a comparison of various strategies. In AAAI
workshop on learning from imbalanced data sets, vol-
ume 68, pages 10–15. Menlo Park, CA.
Japkowicz, N. and Stephen, S. (2002). The class imbalance
problem: A systematic study. Intelligent data analy-
sis, 6(5):429–449.
Karpathy, A. and Fei-Fei, L. (2015). Deep visual-semantic
alignments for generating image descriptions. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 3128–3137.
Kubat, M., Holte, R., and Matwin, S. (1997a). Learning
when negative examples abound. In European Confer-
ence on Machine Learning, pages 146–153. Springer.
Kubat, M., Matwin, S., et al. (1997b). Addressing the curse
of imbalanced training sets: one-sided selection. In
ICML, volume 97, pages 179–186. Nashville, USA.
Lema
ˆ
ıtre, G., Nogueira, F., and Aridas, C. K. (2017).
Imbalanced-learn: A python toolbox to tackle the
curse of imbalanced datasets in machine learning.
Journal of Machine Learning Research, 18(17):1–5.
Maciejewski, T. and Stefanowski, J. (2011). Local neigh-
bourhood extension of smote for mining imbalanced
data. In 2011 IEEE Symposium on Computational In-
telligence and Data Mining (CIDM), pages 104–111.
IEEE.
Maloof, M. A. (2003). Learning when data sets are imbal-
anced and when costs are unequal and unknown. In
ICML-2003 workshop on learning from imbalanced
data sets II, volume 2, pages 2–1.
Nickerson, A., Japkowicz, N., and Milios, E. E. (2001). Us-
ing unsupervised learning to guide resampling in im-
balanced data sets. In AISTATS.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and
Lerer, A. (2017). Automatic differentiation in pytorch.
xyz.
Ramentol, E., Caballero, Y., Bello, R., and Herrera, F.
(2012). Smote-rsb*: a hybrid preprocessing approach
based on oversampling and undersampling for high
imbalanced data-sets using smote and rough sets the-
ory. Knowledge and information systems, 33(2):245–
265.
Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Se-
quence to sequence learning with neural networks. In
Advances in neural information processing systems,
pages 3104–3112.
Visa, S. and Ralescu, A. (2005). Issues in mining imbal-
anced data sets-a review paper. In Proceedings of
the sixteen midwest artificial intelligence and cogni-
tive science conference, volume 2005, pages 67–73.
sn.
Yap, B. W., Rani, K. A., Rahman, H. A. A., Fong, S.,
Khairudin, Z., and Abdullah, N. N. (2014). An appli-
cation of oversampling, undersampling, bagging and
boosting in handling imbalanced datasets. In Pro-
ceedings of the first international conference on ad-
vanced data and information engineering (DaEng-
2013), pages 13–22. Springer.
ICPRAM 2021 - 10th International Conference on Pattern Recognition Applications and Methods
356