(2019). Graph message passing with cross-location
attentions for long-term ili prediction. arXiv preprint
arXiv:1912.10202.
Dong, E., Du, H., and Gardner, L. (2020). An interactive
web-based dashboard to track covid-19 in real time.
Lancet Inf Dis. 20(5):533-534. doi: 10.1016/S1473-
3099(20)30120-1.
Hethcote, H. W. (2000). The mathematics of infectious dis-
eases. SIAM Review, 42:599 – 653.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Kingma, D. and Ba, J. (2015). Adam: A method for
stochastic optimization. 3rd International Conference
for Learning Representations, San Diego, 2015.
Lai, G., Chang, W., Yang, Y., and Liu, H. (2017). Model-
ing long- and short-term temporal patterns with deep
neural networks. CoRR, abs/1703.07015.
Li, M. L., Tazi Bouardi, H., Skali Lami, O., Trikalinos,
T. A., Trichakis, N. K., and Bertsimas, D. (2020).
Forecasting covid-19 and analyzing the effect of gov-
ernment interventions. medRxiv.
Li, Z., Luo, X., Wang, B., Bertozzi, A., and Xin, J. (2019).
A study on graph-structured recurrent neural networks
and sparsification with application to epidemic fore-
casting. In World Congress on Global Optimization,
pages 730–739. Springer.
Morris, D. H., Rossine, F. W., Plotkin, J. B., and Levin,
S. A. (2020). Optimal, near-optimal, and robust epi-
demic control. arXiv preprint arXiv:2004.02209.
Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R.,
Hyman, J., Yan, P., and Chowell, G. (2020). Real-
time forecasts of the COVID-19 epidemic in China
from February 5th to February 24th, 2020. Infectious
Disease Modelling, 5:256 – 263.
Wang, B., Luo, X., Zhang, F., Yuan, B., Bertozzi, A., and
Brantingham, P. (2018). Graph-based deep model-
ing and real time forecasting of sparse spatio-temporal
data. MiLeTS ’18, London, UK, DOI: 10.475/123 4;
arXiv preprint arXiv:1804.00684.
Wang, B., Yin, P., Bertozzi, A., Brantingham, P., Osher, S.,
and Xin, J. (2019). Deep learning for real-time crime
forecasting and its ternarization. Chinese Annals of
Mathematics, Series B, 40(6):949–966.
World-Population-Review (2020). Us states population
2020.
Wu, Y., Yang, Y., Nishiura, H., and Saitoh, M. (2018). Deep
learning for epidemiological predictions. The 41st In-
ternational ACM SIGIR Conference on Research &
Development in Information Retrieval.
Yang, S., Santillana, M., and Kou, S. (2015). Accurate es-
timation of influenza epidemics using Google search
data via ARGO. Proceedings of the National Academy
of Sciences, 112(47):14473–14478.
Yu, B. and Yin, H. (2018). Spatio-temporal graph convolu-
tional networks: A deep learning framework for traffic
forecasting. Twenty-Seventh International Joint Con-
ference on Artificial Intelligence IJCAI-18.
ICPRAM 2021 - 10th International Conference on Pattern Recognition Applications and Methods
364