tions, and (3) incorporating meta-optimization tech-
niques for the automatic, problem-specific configura-
tion of GREYOPT’s parameters.
REFERENCES
Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B.,
and Diehl, M. (2019). CasADi: a software framework
for nonlinear optimization and optimal control. Math-
ematical Programming Computation, 11(1):1–36.
Androulakis, I. P., Maranas, C. D., and Floudas, C. A.
(1995). αBB: A global optimization method for gen-
eral constrained nonconvex problems. Journal of
Global Optimization, 7(4):337–363.
Biegler, L. T. and Zavala, V. M. (2009). Large-scale nonlin-
ear programming using ipopt: An integrating frame-
work for enterprise-wide dynamic optimization. Com-
puters & Chemical Engineering, 33(3):575–582.
Biscani, F. and Izzo, D. (2020). A parallel global multiob-
jective framework for optimization: pagmo. Journal
of Open Source Software, 5(53):2338.
Bonami, P., Biegler, L. T., Conn, A. R., Cornu
´
ejols, G.,
Grossmann, I. E., Laird, C. D., Lee, J., Lodi, A., Mar-
got, F., Sawaya, N., and W
¨
achter, A. (2008). An algo-
rithmic framework for convex mixed integer nonlinear
programs. Discrete Optimization, 5(2):186 – 204.
Boukouvala, F. and Floudas, C. A. (2017). ARGONAUT:
AlgoRithms for Global Optimization of coNstrAined
grey-box compUTational problems. Optimization Let-
ters, 11(5):895–913.
Brodsky, A., Nachawati, M. O., Krishnamoorthy, M., Bern-
stein, W. Z., and Menasc
´
e, D. A. (2019). Factory op-
tima: a web-based system for composition and anal-
ysis of manufacturing service networks based on a
reusable model repository. International journal of
computer integrated manufacturing, 32(3):206–224.
Brodsky, A. and Wang, X. S. (2008). Decision-Guidance
Management Systems (DGMS): Seamless Integration
of Data Acquisition, Learning, Prediction and Opti-
mization. In Proceedings of the Proceedings of the
41st Annual Hawaii International Conference on Sys-
tem Sciences.
Charnes, A. and Cooper, W. W. (1959). Chance-
Constrained Programming. Management Science,
6(1):73–79.
Costa, A. and Nannicini, G. (2018). RBFOpt: an open-
source library for black-box optimization with costly
function evaluations. Mathematical Programming
Computation, 10(4):597–629.
Dolan, E. D. and Mor
´
e, J. J. (2002). Benchmarking opti-
mization software with performance profiles. Mathe-
matical programming, 91(2):201–213.
Farmani, R. and Wright, J. A. (2003). Self-adaptive fitness
formulation for constrained optimization. IEEE trans-
actions on evolutionary computation, 7(5):445–455.
Gilboa, E., Saatc¸i, Y., and Cunningham, J. (2013). Scaling
multidimensional gaussian processes using projected
additive approximations. In International Conference
on Machine Learning, pages 454–461.
Hansen, N., Auger, A., Ros, R., Finck, S., and Po
ˇ
s
´
ık, P.
(2010). Comparing Results of 31 Algorithms from
the Black-Box Optimization Benchmarking BBOB-
2009. In Proceedings of the 12th Annual Conference
Companion on Genetic and Evolutionary Computa-
tion, pages 1689–1696.
Jones, D. R., Schonlau, M., and Welch, W. J. (1998).
Efficient Global Optimization of Expensive Black-
Box Functions. Journal of Global Optimization,
13(4):455–492.
Mahdavi, M., Fesanghary, M., and Damangir, E. (2007). An
improved harmony search algorithm for solving opti-
mization problems. Applied Mathematics and Com-
putation, 188(2):1567–1579.
Mazumdar, A., Chugh, T., Miettinen, K., and L
´
opez-Ib
´
a
˜
nez,
M. (2019). On Dealing with Uncertainties from
Kriging Models in Offline Data-Driven Evolution-
ary Multiobjective Optimization. Evolutionary Multi-
Criterion Optimization, pages 463–474. ISBN: 978-
3-030-12598-1 Place: Cham Publisher: Springer In-
ternational Publishing.
McCormick, G. P. (1976). Computability of global so-
lutions to factorable nonconvex programs: Part I
— Convex underestimating problems. Mathematical
Programming, 10(1):147–175.
Misener, R. and Floudas, C. A. (2014). ANTIGONE: Algo-
rithms for coNTinuous / Integer Global Optimization
of Nonlinear Equations. Journal of Global Optimiza-
tion, 59(2):503–526.
Moore, R. E. (1966). Interval analysis. Prentice-Hall series
in automatic computation. Prentice-Hall, Englewood
Cliffs, NJ.
Mor
´
e, J. J. and Wild, S. M. (2009). Benchmarking
Derivative-Free Optimization Algorithms. SIAM
Journal on Optimization, 20(1):172–191. Publisher:
Society for Industrial and Applied Mathematics.
Nachawati, M. O., Brodsky, A., and Luo, J. (2017). Unity
Decision Guidance Management System: Analytics
Engine and Reusable Model Repository. In Proceed-
ings of the 19th International Conference on Enter-
prise Information Systems - Volume 3: ICEIS,, pages
312–323. SciTePress.
Oliveto, P. S., He, J., and Yao, X. (2007). Time complex-
ity of evolutionary algorithms for combinatorial opti-
mization: A decade of results. International Journal
of Automation and Computing, 4(3):281–293.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. (2011). Scikit-learn:
Machine learning in python. the Journal of machine
Learning research, 12:2825–2830.
Pint
´
er, J. D. (1997). LGO — A Program System for Contin-
uous and Lipschitz Global Optimization. In Bomze,
I. M., Csendes, T., Horst, R., and Pardalos, P. M.,
editors, Developments in Global Optimization, pages
183–197. Springer US, Boston, MA.
Rios, L. and Sahinidis, N. (2009). Derivative-free optimiza-
tion: A review of algorithms and comparison of soft-
Mixed-Integer Constrained Grey-Box Optimization based on Dynamic Surrogate Models and Approximated Interval Analysis
111