methodology and its ability to provide meaningful
label embeddings. The results of the experiments
suggest that the small size of the calculated
embeddings does not prevent them from maintaining
sufficient information regarding the semantics of the
data. Moreover, the experiments performed indicate
the big potential of methods that transform labels into
information-rich vectors.
REFERENCES
Benajiba, Y., Sun, J., Zhang, Y., Jiang, L., Weng, Z., &
Biran, O. (2019). Siamese Networks for Semantic
Pattern Similarity. 13th IEEE International Conference
on Semantic Computing, ICSC 2019, CA, USA, 191–
194. https://doi.org/10.1109/ICOSC.2019.8665512
Bengio, Y. (2013). Deep learning of representations:
Looking forward. Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 7978
LNAI, 1–37. https://doi.org/10.1007/978-3-642-39593-
2_1
Chen, Y., Tai, Y., Liu, X., Shen, C., & Yang, J. (2018).
FSRNet: End-to-End Learning Face Super-Resolution
with Facial Priors. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2492–2501.
Denton, E., & Birodkar, V. (2017). Unsupervised learning
of disentangled representations from video. Advances
in Neural Information Processing Systems, 2017-
December, 4415–4424. http://arxiv.org/abs/1705.10
915
Geng, X. (2016). Label Distribution Learning. IEEE Trans.
Knowl. Data Eng., 28(7), 1734–1748.
Goodfellow, I., Pouget-Abadie, J., & Mirza, M. (2014).
Generative Adversarial Networks. CoRR, abs/1406.2.
Guo, J., Qian, Z., Zhou, Z., & Liu, Y. (2019). MulGAN:
Facial Attribute Editing by Exemplar. CoRR,
abs/1912.1.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual
Learning for Image Recognition. Conference on
Computer Vision and Pattern Recognition (CVPR),
770–778.
He, Z., Zuo, W., Kan, M., Shan, S., & Chen, X. (2019).
AttGAN: Facial Attribute Editing by Only Changing
What You Want. IEEE Transactions on Image
Processing, 28(11), 5464–5478.
Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., & Lerchner, A. (2017).
beta-VAE: Learning Basic Visual Concepts with a
Constrained Variational Framework. ICLR (Poster
Session).
Hinton, G. E., Vinyals, O., & Dean, J. (2015). Distilling the
Knowledge in a Neural Network. Computing Research
Repository (CoRR). http://arxiv.org/abs/1503.02531
Hsu, W.-N., Zhang, Y., & Glass, J. R. (2017). Unsupervised
Learning of Disentangled and Interpretable
Representations from Sequential Data. In I. Guyon, U.
von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S.
V. N. Vishwanathan, & R. Garnett (Eds.), Advances in
Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, {USA} (pp.
1878–1889).
Kim, H., & Mnih, A. (2018). Disentangling by factorising.
In J. G. Dy & A. Krause (Eds.), 35th International
Conference on Machine Learning, ICML 2018 (Vol. 6,
pp. 4153–4171). PMLR.
Kingma, D. P., & Welling, M. (2014). Auto-Encoding
Variational Bayes. In Y. Bengio & Y. LeCun (Eds.),
2nd International Conference on Learning
Representations, ICLR 2014, Conference Track
Proceedings. http://arxiv.org/abs/1312.6114
Kurutach, T., Tamar, A., Yang, G., Russell, S., & Abbeel,
P. (2018). Learning plannable representations with
causal infogan. In S. Bengio, H. M. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, & R.
Garnett (Eds.), Advances in Neural Information
Processing Systems (Vols. 2018-Decem, pp. 8733–
8744).
Lample, G., Zeghidour, N., Usunier, N., Bordes, A.,
Denoyer, L., & Ranzato, M. (2017). Fader Networks:
Manipulating Images by Sliding Attributes. In I.
Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R.
Fergus, S. V. N. Vishwanathan, & R. Garnett (Eds.),
NIPS (pp. 5967–5976).
Liu, M., Ding, Y., Xia, M., Liu, X., Ding, E., Zuo, W., &
Wen, S. (2019). STGAN: A Unified Selective Transfer
Network for Arbitrary Image Attribute Editing. CoRR,
abs/1904.0.
Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep
Learning Face Attributes in the Wild. Proceedings of
International Conference on Computer Vision (ICCV).
Mueller, J., & Thyagarajan, A. (2016). Siamese Recurrent
Architectures for Learning Sentence Similarity. In D.
Schuurmans & M. P. Wellman (Eds.), AAAI (pp. 2786–
2792). AAAI Press.
Neculoiu, P., Versteegh, M., & Rotaru, M. (2016). Learning
Text Similarity with Siamese Recurrent Networks. In P.
Blunsom, K. Cho, S. B. Cohen, E. Grefenstette, K. M.
Hermann, L. Rimell, J. Weston, & S. W. tau Yih (Eds.),
Rep4NLP@ACL (pp. 148–157). Association for
Computational Linguistics.
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net:
Convolutional Networks for Biomedical Image
Segmentation. International Conference of Medical
Image Computing and Computer-Assisted Intervention
18 (MICCAI), 234–241.
Sahito, A., Frank, E., & Pfahringer, B. (2019). Semi-
supervised Learning Using Siamese Networks. In J. Liu
& J. Bailey (Eds.), Australasian Conference on
Artificial Intelligence (Vol. 11919, pp. 586–597).
Springer.
Shao, R., Xu, N., & Geng, X. (2018). Multi-label Learning
with Label Enhancement. ICDM, 437–446.
Shen, W., & Liu, R. (2017). Learning Residual Images for
Face Attribute Manipulation. CVPR, 1225–1233.