Ahn, H., Jung, D., Choi, H.-L., 2020. Deep Generative
Models-Based Anomaly Detection for Spacecraft
Control Systems. In Sensors , 20, p. 1991.
Bishop, C.M., 2006. Pattern Recognition and Machine
Learning. Springer.
Breunig, M.M., Kriegel, H., Ng, R., Sander, J., 2000. LOF:
Identifying Density-Based Local Outliers. In Proc.
ACM Sigmod Int. Conf. on Management of Data,
Dallas.
Conforti, R., La Rosa, M., ter Hofstede, A.H.M., 2017.
Filtering Out Infrequent Behavior from Business
Process Event Logs. In Transactions on Knowledge and
Data Engineering 29 (2), pp. 300 – 314.
Doersch, C., 2016. Tutorial on variational autoencoders. In
arXiv preprint, arXiv:1606.05908.
Gabler Banklexikon, https://www.gabler-
banklexikon.de/definition/business-process-
management-70709/version-377663 (Accessed:
12.10.2020).
Gamboa, J.C.B., 2017. Deep learning for time-series
analysis. In arxiv preprint, arXiv:1701.01887.
Goix, N., 2016. How to Evaluate the Quality of
Unsupervised Anomaly Detection Algorithms? In
arXiv preprint, arXiv:1607.01152v1.
Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep
Learning. MIT Press.
Kingma, D.P., Ba, J., 2014. Adam: A Method for Stochastic
Optimization. In arXiv preprint, arXiv:abs/1412.6980.
Kingma, D.P., Welling, M., 2019. An introduction to
variational autoencoders. In arXiv preprint,
arXiv:1906.02691.
Kingma, D.P., Welling, M., 2014. Auto-encoding
variational Bayes. In 2
nd
International Conference on
Learning Representations, CoRR abs/1312.6114.
Krajsic, P., Franczyk, B. 2020. Lambda Architecture for
Anomaly Detection in Online Process Mining using
Autoencoders. In Hernes M., Wojtkiewicz K.,
Szczerbicki E. (eds) Advances in Computational
Collective Intelligence. ICCCI 2020. Communications
in Computer and Information Science, vol 1287, pp.
579-589, Springer.
Kullback, S., Leibler, R.A., 1951. On information and
sufficiency. In Ann Math Stat 22, pp.79–86.
Leemans, S.J.J., Fahland, D., van der Aalst, W., 2013.
Discovering Block-Structured Process Models from
Event Logs – A Constructive Approach. In
International Conference on Application and Theory of
Petri Nets and Concurrency, pp. 311-329, Springer.
Liu, F.T., Ting, K.M., Zhou, Z.-H., 2008. Isolation forest.
In Proc. of the 8th IEEE International Conference on
Data Mining, Pisa, pp.413-422.
Lloyd, S., 1982. Least squares quantization in PCM. In
IEEE transactions on information theory 28 (2), pp.
129-137.
Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A., 2017.
Detecting Sudden and Gradual Drifts in Business
Processes from Execution Traces. In Transactions on
Knowledge and Data Engineering 29 (10), pp. 2140 –
2154.
Marz, N., Warren, J., 2013. Big Data. Priciples and Best
Practices of Scalable Realtime Data Systems, Manning.
Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M., 2018
Analyzing Business Process Anomalies using
Autoencoders. In Mach Learn 107, pp. 1875–1893.
OMeara, C., Schlag, L., Wickler, M., 2018. Applications of
Deep Learning Neural Networks to Satellite Telemetry
Monitoring. In: Proceedings of the 2018 SpaceOps
Conference, p. 2558.
Ostovar, A., Maaradji, A., La Rosa, M., ter Hofstede,
A.H.M., van Dongen, B.F., 2016. Detecting Drift from
Event Streams of Unpredictable Business Processes. In
International Conference on Conceptual Modeling, pp.
330 – 346, Springer.
Sani, M.F., van Zelst, S.J., van der Aalst, W., 2017.
Improving Process Discover Results by Filtering
Outliers using Conditional Behavioral Probabilities. In
Teniente E., Weidlich M. (eds.) Business Process
Management Workshops. Lecture Notes in Business
Information Processing, vol 308, pp. 216-229, Springer.
Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor,
J., Platt, J., 2000. Support Vector Method for Novelty
Detection. In Advances in Neural Information
Processing Systems 12, pp. 582-588.
Taymouri, F., La Rosa, M., Erfani, S., Bozorgi, Z.D.,
Verenich, I., 2020. Predictive Business Process
Monitoring via Generative Adversarial Nets: The Case
of Next Event Prediction. In Fahland D., Ghidini C.,
Becker J., Dumas M. (eds) Business Process
Management. BPM 2020. Lecture Notes in Computer
Science, vol 12168. Springer, Cham.
van der Aalst, W.M.P., 2011. Process mining: discovery,
conformance and enhancement of business processes.
Springer.
van der Aalst, W.M.P., La Rosa, M., Santoro, F. M., 2016.
Business Process Management. Don’t Forget to
Improve the Process! In Business & Information
Systems Engineering 58 (1), pp. 1-6, Springer.
van der Aalst, W., 2006. Process Mining. Data Science in
Action. Springer, Berlin, 2
nd
edition.
van der Aalst, W., Weijters, A.J.M.M., Maruster, L., 2004.
Workflow Mining: Discovering Pro-cess Models From
Event Logs. In Transactions on Knowledge and Data
Engineering 16 (9), pp. 1128-1142.
van Zelst, S.J., Fani Sani, M., Ostovar A., Conforti, R., La
Rosa, M., 2018. Filtering Spurious Events from Event
Streams of Business Processes. In Advanced
Information Systems Engineering. CAiSE 2018.
Lecture Notes in Computer Science, vol, 10816, pp. 35-
52, Tallin, Springer.
Wang, J., Song, S., Lin, X., Zhu, X., Pei, J., 2015. Cleaning
Structured Event Logs: A Graph Re-pair Approach. In
31st International Conference on Data Engineering, pp.
30- 41, IEEE Press.
4TU.ResearchData, Loan application example,
configuration 1.,
https://doi.org/10.4121/uuid:cdf3ba31-291d-468d-
9712-3a58ac6da3fc (Accessed: 22.10.2020 ).