method with deep residual network for pediatric pneu-
monia diagnosis. Computer methods and programs in
biomedicine, 187:104964.
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A.,
Ciompi, F., Ghafoorian, M., Van Der Laak, J. A.,
Van Ginneken, B., and S
´
anchez, C. I. (2017). A survey
on deep learning in medical image analysis. Medical
image analysis, 42:60–88.
Lundervold, A. S. and Lundervold, A. (2019). An overview
of deep learning in medical imaging focusing on mri.
Zeitschrift f
¨
ur Medizinische Physik, 29(2):102–127.
Mandell, L. A., Wunderink, R. G., Anzueto, A., Bartlett,
J. G., Campbell, G. D., Dean, N. C., Dowell, S. F.,
File Jr, T. M., Musher, D. M., Niederman, M. S.,
et al. (2007). Infectious diseases society of amer-
ica/american thoracic society consensus guidelines on
the management of community-acquired pneumonia
in adults. Clinical infectious diseases, 44(Supple-
ment
2):S27–S72.
Mittal, A., Kumar, D., Mittal, M., Saba, T., Abunadi, I.,
Rehman, A., and Roy, S. (2020). Detecting pneumo-
nia using convolutions and dynamic capsule routing
for chest x-ray images. Sensors, 20(4):1068.
Nahid, A.-A., Sikder, N., Bairagi, A. K., Razzaque, M., Ma-
sud, M., Z Kouzani, A., Mahmud, M., et al. (2020). A
novel method to identify pneumonia through analyz-
ing chest radiographs employing a multichannel con-
volutional neural network. Sensors, 20(12):3482.
Pan, S. J. and Yang, Q. (2009). A survey on transfer learn-
ing. IEEE Transactions on knowledge and data engi-
neering, 22(10):1345–1359.
Rahman, T., Chowdhury, M. E., Khandakar, A., Islam,
K. R., Islam, K. F., Mahbub, Z. B., Kadir, M. A., and
Kashem, S. (2020). Transfer learning with deep con-
volutional neural network (cnn) for pneumonia detec-
tion using chest x-ray. Applied Sciences, 10(9):3233.
Rajaraman, S., Candemir, S., Kim, I., Thoma, G., and An-
tani, S. (2018). Visualization and interpretation of
convolutional neural network predictions in detecting
pneumonia in pediatric chest radiographs. Applied
Sciences, 8(10):1715.
Robbins, H. and Monro, S. (1951). A stochastic approxi-
mation method. The annals of mathematical statistics,
pages 400–407.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. (2015). Imagenet large scale visual
recognition challenge. International journal of com-
puter vision, 115(3):211–252.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2018). Mobilenetv2: Inverted residu-
als and linear bottlenecks. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4510–4520.
Shahhosseini, M., Hu, G., and Pham, H. (2019). Opti-
mizing ensemble weights and hyperparameters of ma-
chine learning models for regression problems. arXiv
preprint arXiv:1908.05287.
Shen, D., Wu, G., and Suk, H.-I. (2017). Deep learning in
medical image analysis. Annual review of biomedical
engineering, 19:221–248.
Stephen, O., Sain, M., Maduh, U. J., and Jeong, D.-U.
(2019). An efficient deep learning approach to pneu-
monia classification in healthcare. Journal of health-
care engineering, 2019.
Sun, S., Cao, Z., Zhu, H., and Zhao, J. (2019). A survey
of optimization methods from a machine learning per-
spective. IEEE transactions on cybernetics.
Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A.
(2016a). Inception-v4, inception-resnet and the im-
pact of residual connections on learning. arXiv
preprint arXiv:1602.07261.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wo-
jna, Z. (2016b). Rethinking the inception architecture
for computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 2818–2826.
Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu,
C. (2018). A survey on deep transfer learning. In
International conference on artificial neural networks,
pages 270–279. Springer.
Torrey, L. and Shavlik, J. (2010). Transfer learning. In
Handbook of research on machine learning appli-
cations and trends: algorithms, methods, and tech-
niques, pages 242–264. IGI global.
Weiss, K., Khoshgoftaar, T. M., and Wang, D. (2016).
A survey of transfer learning. Journal of Big data,
3(1):9.
An Ensemble-based Approach by Fine-Tuning the Deep Transfer Learning Models to Classify Pneumonia from Chest X-Ray Images
401