REFERENCES
Amorim, E. C. F., Veloso, A., 2017. A Multi-aspect
Analysis of Automatic Essay Scoring for Brazilian
Portuguese. 15th Conference of the European Chapter
of the Association for Computational Linguistics, pp.
94-102. DOI: 10.18653/v1/E17-4010.
Attali Y., Burstein, J., 2006. Automated Essay Scoring with
e-rater® V.2. Journal of Technology, Learning, and
Assessment, 4(3).
Bereiter, C., 2003. Foreword. In Mark D. Shermis and Jill
Burstein (Eds.), Automated essay scoring: a cross
disciplinary perspective. Lawrence Erlbaum
Associates, Mahwah, NJ, pp. vii-x.
Chawla, N. V., Bowyer, K. W., Hall, Lawrence, O. W.,
Kegelmeyer, P., 2002. SMOTE: Synthetic Minority
oversampling technique. Journal of Artificial
Intelligence Research, 16:321-357. DOI:
10.1613/jair.953.
Dikli, S., 2006. An Overview of Automated Scoring of
Essays. Journal of Technology Learning, and
Assessment, 5(1).
Dong, F., Zhang, Y., Yang, J. 2017. Attention-based
Recurrent Convolutional Neural Network for
Automatic Essay Scoring. 21st Conference on
Computational Natural Language Learning – CoNLL
2017, pp. 153-162. DOI: 10.18653/v1/K17-1017.
Foltz, P. W., Laham, D., Landauer, T. K., 1999. Automated
Essay Scoring: Applications to educational technology.
World Conference on Educational Multimedia,
Hypermedia and Telecommunications – EdMedia’99,
pp. 939-944.
Fonseca, E. R., Medeiros, I., Kamikawachi, D., Bokan, A.,
2018. Automatically grading Brazilian student essays. 13th
International Conference on Computational Processing of
the Portuguese Language – PROPOR 2018, pp. 170-179.
DOI: 10.1007/978-3-319-99722-3_18.
Friedman, J. H., 2001. Greedy function approximation: A
gradient boosting machine. Annals of Statistics,
29(5):1189-1232.
Ge, S., Chen, X., 2020. The Application of Deep Learning
in Automated Essay Evaluation. In Emerging
Technologies for Education. LNCS 11984, Springer,
pp.310-318. DOI: 10.1007/978-3-030-38778-5_34
Haendchen Filho, A., Concatto, F., Nau, J., do Prado, H. A.,
Imhof, D. O., Ferneda, E., 2019. Imbalanced Learning
Techniques for Improving the Performance of
Statistical Models in Automated Essay Scoring.
Procedia Computer Science, 159:764-773.
Hartmann, N. S., Fonseca, E. R., Shulby, C. D., Treviso, M.
V., Rodrigues, J. S., Aluísio, S. M., 2017. Portuguese
Word Embeddings: Evaluating on Word Analogies and
Natural Language Tasks. Symposium in Information
and Human Language Technology – STIL 2017, pp.
122-131.
Hastie, T., Tibshirani, R., Friedman, J. H., 2009. The Elements
of Statistical Learning: Data Mining, Inference, and
Prediction. Springer, New York, NY, 2
nd
Edition.
He, H., Bai, Y., Garcia, E. A., Li, S., 2008. ADASYN:
Adaptive Synthetic Sampling Approach for Imbalanced
Learning. IEEE International Joint Conference on
Neural Networks (IEEE World Congress on
Computational Intelligence), pp. 1322-1328. DOI:
10.1109/IJCNN.2008.4633969.
INEP-MEC, 2018. Relatório Brasil no Pisa 2018. Diretoria
de Avaliação da Educação Básica. Ministério da
Educação. Brasilia. Brazil. http://portal.inep.gov.br/
documents/186968/484421/RELAT%C3%93RIO+BR
ASIL+NO+PISA+2018/3e89677c-221c-4fa4-91ee-
08a48818604c?version=1.0
Kim, Y. Jernite, Y., Sontag, D., Rush, A. M., 2016.
Character-aware neural language models. Thirtieth
AAAI Conference on Artificial Intelligence – AAAI-16,
pp. 2741-2749.
Nguyen H., Dery, L., 2016. Neural Networks for Automated
Essay Grading. CS224d Stanford Reports.
https://cs224d.stanford.edu/reports/huyenn.pdf.
Rao, R. S., Pais, A. R., 2019. Detection of phishing
websites using an efficient feature-based machine
learning framework. Neural Comput & Applications
31:3851-3873. DOI: 10.1007/s00521-017-3305-0.
Seiffert, C., Khoshgoftaar, T. M., van Hulse, J., Napolitano,
A., 2008. Building Useful Models from Imbalanced
Data with Sampling and Boosting. Twenty-First
International FLAIRS Conference, pp. 306-311.
Shermis, M. D., Burstein J. (Eds.), 2003. Automated essay
scoring: A cross-disciplinary perspective. Lawrence
Erlbaum Associates Publishers, Mahwah, NJ.
Shermis, M. D., Burstein J., 2013. Handbook of Automated
Essay Evaluation: Current applications and new
directions. Routledge, New York, NY.
Shin, E., 2018. A Neural Network approach to Automated
Essay Scoring: A Comparison with the Method of
Integrating Deep Language Features using Coh-
Metrix. Master Thesis. Department of Educational
Psychology University of Alberta, Canada. DOI:
10.7939/R3V11W25D.
Taghipour K., Ng, H. T., 2016. A Neural Approach to
Automated Essay Scoring. 2016 Conference on
Empirical Methods in Natural Language Processing,
pp. 1882-1891.
Tibshirani, R., 1996. Regression shrinkage and selection
via the LASSO. Journal of the Royal Statistical Society
B, 58(1):267-288.
Yap, B. W., K. A. Rani, K. A., Rahman, H. A. A., Fong, S.,
Khairudin, Z., Abdullah, N. N., 2014. An Application
of Oversampling, Undersampling, Bagging and
Boosting in Handling Imbalanced Datasets. First
International Conference on Advanced Data and
Information Engineering, pp. 13-22. Lecture Notes in
Electrical Engineering 285, Springer. DOI:
10.1007/978-981-4585-18-7_2.
Zaidi, A. H., 2016. Neural Sequence Modelling for
Automated Essay Scoring. Master Thesis. University of
Cambridge. https://www.cl.cam.ac.uk/~ahz22/docs/
mphil-thesis.pdf.
Zou, Will Y., Socher, R., Cer, D., Manning, C. D., 2013.
Bilingual word embeddings for phrase-based machine
translation. IN Conference on Empirical Methods in
Natural Language Processing, pp. 1393-1398.