Guo, Y., Wang, S., Zhou, A., Xu, J., Yuan, J., and Hsu, C.
H. (2019). User allocation-aware edge cloud placement
in mobile edge computing. Software - Practice and
Experience, January 2019, 1–14.
Gupta, H., Dastjerdi, A. V., Ghosh, S. K., and Buyya, R.
(2017). iFogSim: A toolkit for modeling and simulation
of resource management techniques in the Internet of
Things, Edge and Fog computing environments.
Software - Practice and Experience, 47(9), 1275–1296.
Islam, S., Keung, J., Lee, K., and Liu, A. (2012). Empirical
prediction models for adaptive resource provisioning in
the cloud. Future Generation Computer Systems, 28(1),
155–162.
James, G., Witten, D., Hastie, T., and Tibshirani, R. (2017).
Introduction to Statistical Learning with Applications
in R. Springer.
Kaur, K., Dhand, T., Kumar, N., and Zeadally, S. (2017).
Container-as-a-Service at the Edge: Trade-off between
Energy Efficiency and Service Availability at Fog Nano
Data Centers. IEEE Wireless Communications, 24(3),
48–56.
Kavanagh, R., Djemame, K., Ejarque, J., Badia, R. M., and
Garcia-perez, D. (2019). Energy-aware Self-Adaptation
for Application Execution on Heterogeneous Parallel
Architectures. IEEE Transactions on Sustainable
Computing, 1–15.
Kramer, J., and Magee, J. (2007). Self-Managed Systems:
an Architectural Challenge. 2007 Future of Software
Engineering, 259–268.
Krupitzer, C., Roth, F. M., VanSyckel, S., Schiele, G., and
Becker, C. (2015). A survey on engineering approaches
for self-adaptive systems. Pervasive and Mobile
Computing, 17, 184–206.
Kumar, J., and Singh, A. K. (2018). Workload prediction in
cloud using artificial neural network and adaptive
differential evolution. Future Generation Computer
Systems, 81, 41–52.
Li, G., Song, J., Wu, J., and Wang, J. (2018). Method of
Resource Estimation Based on QoS in Edge
Computing. Wireless Communications and Mobile
Computing, 2018.
Liu, B., Guo, J., Li, C., and Luo, Y. (2020). Workload
forecasting based elastic resource management in edge
cloud. Computers and Industrial Engineering,
139(0360–8352), 1–12.
Liu, C., Liu, C., Shang, Y., Chen, S., Cheng, B., and Chen,
J. (2017). An adaptive prediction approach based on
workload pattern discrimination in the cloud. Journal
of Network and Computer Applications, 80, 35–44.
Lorido-Botran, T., Miguel-Alonso, J., and Lozano, J. A.
(2014). A Review of Auto-scaling Techniques for
Elastic Applications in Cloud Environments. Journal of
Grid Computing, 12(4), 559–592.
Moreno-vozmediano, R., Montero, R. S., Huedo, E., and
Llorente, I. M. (2019). Efficient resource provisioning
for elastic Cloud services based on machine learning
techniques. Journal of Cloud ComputingAdvances,
Systems and Applications, 8(1).
Nikravesh, A. Y., Ajila, S. A., and Lung, C. H. (2017). An
autonomic prediction suite for cloud resource
provisioning. Journal of Cloud Computing, 6(1).
Nikravesh, A. Y., Ajila, S. A., and Lung, C. H. (2015a).
Evaluating Sensitivity of Auto-scaling Decisions in an
Environment with Different Workload Patterns. IEEE
39th Annual International Computers, Software &
Applications Conference, 415–420.
Nikravesh, A. Y., Ajila, S. A., and Lung, C. H. (2014).
Measuring prediction sensitivity of a cloud auto-scaling
system. Proceedings - IEEE 38th Annual International
Computers, Software and Applications Conference
Workshops, COMPSACW 2014, 690–695.
Nikravesh, A. Y., Ajila, S. A., and Lung, C. H. (2015b).
Towards an Autonomic Auto-scaling Prediction
System for Cloud Resource Provisioning. Proceedings
- 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems,
SEAMS 2015, 35–45.
Sapankevych, N. I., and Sankar, R. (2009). Using Support
Vector Machines: A Survey. IEEE Computational
Intelligence Magazine, 2, 24–38.
Sguangwang.com. (2018). The Telecom Dataset (Shanghai
Telecom). http://sguangwang.com/TelecomDataset.html
Shi, W., and Dustdar, S. (2016). The Promise of Edge
Computing. Computer, 49(5), 78–81.
Singh, S., and Chana, I. (2015). QoS-Aware Autonomic
Resource Management in Cloud Computing: A
Systematic Review. ACM Computing Surveys, 48(3),
1–46.
Toczé, K., and Nadjm-Tehrani, S. (2018). A Taxonomy for
Management and Optimization of Multiple Resources
in Edge Computing. Wireless Commu. and Mobile
Computing, 2018, 1–20.
Wang, S., Guo, Y., Zhang, N., Yang, P., Zhou, A., and
Shen, X. S. (2019). Delay-aware Microservice
Coordination in Mobile Edge Computing: A
Reinforcement Learning Approach. IEEE Transactions
on Mobile Computing, 1–1.
Wang, S., Zhao, Y., Huang, L., Xu, J., and Hsu, C. H.
(2019). QoS prediction for service recommendations in
mobile edge computing. Journal of Parallel and
Distributed Computing, 127, 134–144.
Wang, S., Zhao, Y., Xu, J., Yuan, J., and Hsu, C. H. (2019).
Edge server placement in mobile edge computing.
Journal of Parallel and Distributed Computing, 127,
160–168.
Xu, M., and Buyya, R. (2019). Brownout Approach for
Adaptive Management of Resources and Applications
in Cloud Computing Systems. ACM Computing
Surveys, 52(1), 1–27.
Zhang, G., Eddy Patuwo, B., and Y. Hu, M. (1998).
Forecasting with artificial neural networks: The state of
the art. International Journal of Forecasting, 14(1), 35–
62.