ACKNOWLEDGEMENTS
The authors thank the physiologists belonging to the
Department of Biomedical and Biotechnological Sci-
ences (BIOMETEC) of the University of Catania,
who collaborated in this work in the context of the
clinical study Ethical Committee CT1 authorization
n.113 / 2018 / PO. This research was funded by
the National Funded Program 2014-2020 under grant
agreement n. 1733, (ADAS + Project). The reported
information is covered by the following registered
patents: IT Patent Nr. 102017000120714, 24 Octo-
ber 2017. IT Patent Nr. 102019000005868, 16 April
2018; IT Patent Nr. 102019000000133, 07 January
2019.
REFERENCES
Abi-Saleh, B. and Omar, B. (2019). Einthoven’s triangle
transparency: a practical method to explain limb lead
configuration following single lead misplacements.
Reviews in cardiovascular medicine, 11(1):33–38.
Alshaqaqi, B., Baquhaizel, A. S., Ouis, M. E. A., Boume-
hed, M., Ouamri, A., and Keche, M. (2013). Driver
drowsiness detection system. In 2013 8th Interna-
tional Workshop on Systems, Signal Processing and
their Applications (WoSSPA), pages 151–155. IEEE.
Altun, M. and Celenk, M. (2017). Road scene content
analysis for driver assistance and autonomous driv-
ing. IEEE transactions on intelligent transportation
systems, 18(12):3398–3407.
Banna, G. L., Camerini, A., Bronte, G., Anile, G., Ad-
deo, A., Rundo, F., Zanghi, G., Lal, R., and Li-
bra, M. (2018). Oral metronomic vinorelbine in
advanced non-small cell lung cancer patients unfit
for chemotherapy. Anticancer research, 38(6):3689–
3697.
Cai, Y., Liu, Z., Wang, H., and Sun, X. (2017). Saliency-
based pedestrian detection in far infrared images.
IEEE Access, 5:5013–5019.
Cheon, S.-P. and Kang, S.-J. (2017). Sensor-based driver
condition recognition using support vector machine
for the detection of driver drowsiness. In 2017 IEEE
Intelligent Vehicles Symposium (IV), pages 1517–
1522. IEEE.
Choi, H.-T., Back, M.-K., and Lee, K.-C. (2018). Driver
drowsiness detection based on multimodal using fu-
sion of visual-feature and bio-signal. In 2018 Inter-
national Conference on Information and Communi-
cation Technology Convergence (ICTC), pages 1249–
1251. IEEE.
Deng, T., Yang, K., Li, Y., and Yan, H. (2016). Where does
the driver look? top-down-based saliency detection in
a traffic driving environment. IEEE Transactions on
Intelligent Transportation Systems, 17(7):2051–2062.
Fujiwara, K., Abe, E., Kamata, K., Nakayama, C., Suzuki,
Y., Yamakawa, T., Hiraoka, T., Kano, M., Sumi, Y.,
Masuda, F., et al. (2018). Heart rate variability-based
driver drowsiness detection and its validation with
eeg. IEEE Transactions on Biomedical Engineering,
66(6):1769–1778.
Hong, T. and Qin, H. (2007). Drivers drowsiness de-
tection in embedded system. In 2007 IEEE Inter-
national Conference on Vehicular Electronics and
Safety, pages 1–5. IEEE.
Igasaki, T., Nagasawa, K., Murayama, N., and Hu, Z.
(2015). Drowsiness estimation under driving en-
vironment by heart rate variability and/or breathing
rate variability with logistic regression analysis. In
2015 8th International Conference on Biomedical En-
gineering and Informatics (BMEI), pages 189–193.
IEEE.
Kurian, D., PL, J. J., Radhakrishnan, K., and Balakrish-
nan, A. A. (2014). Drowsiness detection using photo-
plethysmography signal. In 2014 Fourth international
conference on advances in computing and communi-
cations, pages 73–76. IEEE.
Mazzillo, M., Maddiona, L., Rundo, F., Sciuto, A., Lib-
ertino, S., Lombardo, S., and Fallica, G. (2018). Char-
acterization of sipms with nir long-pass interferential
and plastic filters. IEEE Photonics Journal, 10(3):1–
12.
Min, K. and Corso, J. J. (2019). Tased-net: Temporally-
aggregating spatial encoder-decoder network for
video saliency detection. In Proceedings of the IEEE
International Conference on Computer Vision, pages
2394–2403.
Rundo, F., Conoci, S., Banna, G. L., Ortis, A., Stanco, F.,
and Battiato, S. (2018a). Evaluation of levenberg–
marquardt neural networks and stacked autoencoders
clustering for skin lesion analysis, screening and
follow-up. IET Computer Vision, 12(7):957–962.
Rundo, F., Conoci, S., Ortis, A., and Battiato, S.
(2018b). An advanced bio-inspired photoplethysmog-
raphy (ppg) and ecg pattern recognition system for
medical assessment. Sensors, 18(2):405.
Rundo, F., Petralia, S., Fallica, G., and Conoci, S. (2018c).
A nonlinear pattern recognition pipeline for ppg/ecg
medical assessments. In Convegno Nazionale Sensori,
pages 473–480. Springer.
Rundo, F., Rinella, S., Massimino, S., Coco, M., Fallica, G.,
Parenti, R., Conoci, S., and Perciavalle, V. (2019a).
An innovative deep learning algorithm for drowsiness
detection from eeg signal. Computation, 7(1):13.
Rundo, F., Spampinato, C., and Conoci, S. (2019b). Ad-hoc
shallow neural network to learn hyper filtered photo-
plethysmographic (ppg) signal for efficient car-driver
drowsiness monitoring. Electronics, 8(8):890.
Rundo, F., Trenta, F., Di Stallo, A. L., and Battiato, S.
(2019c). Advanced markov-based machine learning
framework for making adaptive trading system. Com-
putation, 7(1):4.
Rundo, F., Trenta, F., di Stallo, A. L., and Battiato, S.
(2019d). Grid trading system robot (gtsbot): A novel
mathematical algorithm for trading fx market. Applied
Sciences, 9(9):1796.