mass photogrammetry. Journal of Cultural Heritage
Management and Sustainable Development, 9(1), 24–
42. https://doi.org/10.1108/JCHMSD-03-2018-0018
Ch’ng, E., Cai, S., Zhang, T. E., Leow, F. T., Ch’ng, E., Cai,
S., … Leow, F. T. (2019). Crowdsourcing 3D cultural
heritage : best practice for mass photogrammetry.
Emerald Publishing Limited 2019, 9(1), 24–42.
https://doi.org/10.1108/JCHMSD-03-2018-0018
Ch’ng, E., Li, Y., Cai, S., & Leow, F.-T. (2019). The Effects
of VR Environments on the Acceptance, Experience
and Expectations of Cultural Heritage Learning.
Journal of Computing and Cultural Heritage.
Chen, L., Zhang, Z., & Peng, L. (2018). Fast single shot
multibox detector and its application on vehicle
counting system. IET Intelligent Transport Systems,
12(10), 1406–1413. https://doi.org/10.1049/iet-
its.2018.5005
Dwibedi, D., Misra, I., & Hebert, M. (2017). Cut, Paste and
Learn: Surprisingly Easy Synthesis for Instance
Detection. Proceedings of the IEEE International
Conference on Computer Vision, 2017-Octob, 1310–
1319. https://doi.org/10.1109/ICCV.2017.146
Girshick, R. (2015). Fast R-CNN. Proceedings of the IEEE
International Conference on Computer Vision, 2015
Inter, 1440–1448.
https://doi.org/10.1109/ICCV.2015.169
Hess, M., Petrovic, V., Meyer, D., Rissolo, D., & Kuester,
F. (2015). Fusion of multimodal three-dimensional data
for comprehensive digital documentation of cultural
heritage sites. 2015 Digital Heritage International
Congress, Digital Heritage 2015, 595–602.
https://doi.org/10.1109/DigitalHeritage.2015.7419578
Hung, J., Rangel, G., Chan, H. T. H., Leônidas, I., Paulo,
U. D. S., Ferreira, M. U., … Carpenter, A. E. (2017).
Applying Faster R-CNN for Object Detection on
Malaria Images. 2017 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW),
56–61.
Li, Y., Ch’ng, E., Cai, S., & See, S. (2018). Multiuser
Interaction with Hybrid VR and AR for Cultural
Heritage Objects. In Digital Heritage 2018. San
Francisco, USA: IEEE. Retrieved from
file:///Users/yueli/Library/Application
Support/Mendeley Desktop/Downloaded/Li et al. -
2018 - Multiuser Interaction with Hybrid VR and AR
for Cultural Heritage Objects.pdf
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C. Y., & Berg, A. C. (2016). SSD: Single shot
multibox detector. Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 9905
LNCS, 21–37. https://doi.org/10.1007/978-3-319-
46448-0_2
Luhmann, T., Robson, S., Kyle, S. A., & Harley, I. A.
(2006). Close range photogrammetry: principles,
techniques and applications. Whittles.
Mudge, M., Ashley, M., & Schroer, C. (2007). A digital
future for cultural heritage. International Archives of
the Photogrammetry, Remote Sensing and Spatial
Information Sciences - ISPRS Archives,
36(5/C53).
Mudge, M., Schroer, C., Earl, G., Martinez, K., Pagi, H.,
Toler-Franklin, C., … Ashley, M. (2010). Principles
and practices of robust photography-based digital
imaging techniques for museums. In VAST 2010: The
11th International Symposium on Virtual Reality,
Archaeology and Cultural Heritage.
Quattoni, A., & Torralba, A. (2009). Recognizing indoor
scenes. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition (pp. 413–420). IEEE.
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016).
You only look once: Unified, real-time object detection.
Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2016-
Decem, 779–788.
https://doi.org/10.1109/CVPR.2016.91
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on
Image Data Augmentation for Deep Learning. Journal
of Big Data, 6(1). https://doi.org/10.1186/s40537-019-
0197-0
Sivakumar, A. N. V., Li, J., Scott, S., Psota, E., Jhala, A. J.,
Luck, J. D., & Shi, Y. (2020). Comparison of object
detection and patch-based classification deep learning
models on mid-to late-season weed detection in UAV
imagery. Remote Sensing, 12(13).
https://doi.org/10.3390/rs12132136
Yilmaz, H. M., Yakar, M., Gulec, S. A., & Dulgerler, O. N.
(2007). Importance of digital close-range
photogrammetry in documentation of cultural heritage.
Journal of Cultural Heritage, 8(4), 428–433.
https://doi.org/10.1016/j.culher.2007.07.004.
Balancing Performance and Effort in Deep Learning via the Fusion of Real and Synthetic Cultural Heritage Photogrammetry Training Sets