tajweed rules from quran. In 2013 Taibah University
International Conference on Advances in Information
Technology for the Holy Quran and Its Sciences, pages
281–286. IEEE.
Ali, M. and Tan, G. (2019). Bidirectional encoder–decoder
model for arabic named entity recognition. Arabian
Journal for Science and Engineering, 44.
Ali, M., Tan, G., and Hussain, A. (2018). Bidirectional
recurrent neural network approach for arabic named
entity recognition. Future Internet, 10.
Aratools (2020). Aratools Arabic-English dictionary.
http://aratools.com/.
Benajiba, Y. and Rosso, P. (2007a). Anersys 2.0 : Conquer-
ing the ner task for the arabic language by combin-
ing the maximum entropy with pos-tag information.
In Proc. Workshop on Natural Language-Independent
Engineering, 3rd Indian Int. Conf. on Artificial Intel-
ligence, IICAI-2007.
Benajiba, Y. and Rosso, P. (2007b). Anersys 2.0: Conquer-
ing the ner task for the arabic language by combining
the maximum entropy with pos-tag information. pages
1814–1823.
Benajiba, Y. and Rosso, P. (2008a). Arabic named en-
tity recognition using conditional random fields. In
In Arabic Language and local languages processing:
Status Updates and Prospects.
Benajiba, Y. and Rosso, P. (2008b). Named entity recogni-
tion using conditional random fields.
Benajiba, Y., Rosso, P., and Bened
´
ıRuiz, J. M. (2007).
Anersys: An arabic named entity recognition system
based on maximum entropy. In Gelbukh, A., editor,
Computational Linguistics and Intelligent Text Pro-
cessing, pages 143–153. Springer Berlin Heidelberg.
Elsebai, A., Meziane, F., Belkredim, F. Z., et al. (2009).
A rule based persons names arabic extraction system.
Communications of the IBIMA, 11(6):53–59.
Elsherif, H. M., Alomari, K., AlHamad, A. Q., and Shaalan,
K. (2019). Arabic rule-based named entity recognition
system using gate. In MLDM.
Google (2020). Google Translate API for Python.
https://pypi.org/project/googletrans/.
Grishman, R. and Sundheim, B. (1996). Message under-
standing conference-6: A brief history. In Proceed-
ings of the 16th Conference on Computational Lin-
guistics - Volume 1, COLING ’96, page 466–471,
USA. Association for Computational Linguistics.
Helwe, C. and Elbassuoni, S. (2019). Arabic named en-
tity recognition via deep co-learning. Artificial Intel-
ligence Review, 52(1):197–215.
Khalil, H., Osman, T., and Miltan, M. (2020). Extract-
ing arabic composite names using genitive principles
of arabic grammar. ACM Trans. Asian Low-Resour.
Lang. Inf. Process., 19(4).
Maloney, J. and Niv, M. (1998). TAGARAB: A fast, ac-
curate Arabic name recognizer using high-precision
morphological analysis. In Computational Ap-
proaches to Semitic Languages.
Mohammed, N. and Omar, N. (2012). Arabic named entity
recognition using artificial neural network. Journal of
Computer Science, 8(8):1285–1293.
Oudah, M. and Shaalan, K. (2012). A pipeline Arabic
named entity recognition using a hybrid approach.
In Proceedings of COLING 2012, pages 2159–2176,
Mumbai, India. The COLING 2012 Organizing Com-
mittee.
Pasha, A., Al-Badrashiny, M., Diab, M., El Kholy, A., Es-
kander, R., Habash, N., Pooleery, M., Rambow, O.,
and Roth, R. (2014). MADAMIRA: A fast, compre-
hensive tool for morphological analysis and disam-
biguation of Arabic. In Proceedings of the Ninth In-
ternational Conference on Language Resources and
Evaluation (LREC’14), pages 1094–1101.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Powers, D. M. W. (2011). Evaluation: From precision, re-
call and f-measure to roc., informedness, markedness
& correlation. Journal of Machine Learning Tech-
nologies, 2(1):37–63.
Ruder, S. (2016). An overview of gradient descent opti-
mization algorithms. CoRR, abs/1609.04747.
Shaalan, K. (2014). A survey of arabic named entity
recognition and classification. Comput. Linguist.,
40(2):469–510.
Shaalan, K. and Raza, H. (2007). Person name entity recog-
nition for arabic. In Proceedings of the 2007 Work-
shop on Computational Approaches to Semitic Lan-
guages: Common Issues and Resources, Semitic ’07,
pages 17–24, Stroudsburg, PA, USA. Association for
Computational Linguistics.
Sutton, C. and McCallum, A. (2012). An introduction
to conditional random fields. Found. Trends Mach.
Learn., 4(4):267–373.
Villena-Rom
´
an, J., Collada-P
´
erez, S., Lana-Serrano, S., and
Gonz
´
alez, J. (2011). Hybrid approach combining ma-
chine learning and a rule-based expert system for text
categorization. In FLAIRS Conference.
Windsor, L. C., Cupit, J. G., and Windsor, A. J. (2019). Au-
tomated content analysis across six languages. PLOS
ONE, 14(11):1–14.
ArabiaNer: A System to Extract Named Entities from Arabic Content
497