Kim, Y. (2014). Convolutional neural networks for sentence
classification. CoRR, abs/1408.5882.
Kiritchenko, S., Zhu, X., Cherry, C., and Mohammad, S.
(2014). Nrc-canada-2014: Detecting aspects and sen-
timent in customer reviews. In Proceedings of the 8th
International Workshop on Semantic Evaluation, Se-
mEval@COLING 2014, Dublin, Ireland, August 23-
24, 2014.
Kooli, N. and Pigneul, E. (2018). Analyse de sentiments
`
a
base d’aspects par combinaison de r
´
eseaux profonds
: application
`
a des avis en franc¸ais (A combination
of deep learning methods for aspect-based sentiment
analysis : application to french reviews). In Actes de la
Conf
´
erence TALN. CORIA-TALN-RJC 2018 - Volume
1, Rennes, France, May 14-18, 2018.
Kumar, A., Kohail, S., Kumar, A., Ekbal, A., and Bie-
mann, C. (2016). IIT-TUDA at semeval-2016 task
5: Beyond sentiment lexicon: Combining domain de-
pendency and distributional semantics features for as-
pect based sentiment analysis. In Proceedings of the
10th International Workshop on Semantic Evaluation,
SemEval@NAACL-HLT 2016, San Diego, CA, USA,
June 16-17, 2016.
Lin, P. and Luo, X. (2020). A survey of sentiment analysis
based on machine learning. In Zhu, X., Zhang, M.,
Hong, Y., and He, R., editors, Natural Language Pro-
cessing and Chinese Computing - 9th CCF Interna-
tional Conference, NLPCC 2020, Zhengzhou, China,
October 14-18, 2020, Proceedings, Part I.
Ma, D., Li, S., Zhang, X., and Wang, H. (2017). Interactive
attention networks for aspect-level sentiment classifi-
cation. In Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, IJ-
CAI 2017, Melbourne, Australia, August 19-25, 2017.
Machacek, J. (2016). Butknot at semeval-2016 task 5: Su-
pervised machine learning with term substitution ap-
proach in aspect category detection. In Proceedings of
the 10th International Workshop on Semantic Evalu-
ation, SemEval@NAACL-HLT 2016, San Diego, CA,
USA, June 16-17, 2016.
Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopou-
los, I., Manandhar, S., Al-Smadi, M., Al-Ayyoub,
M., Zhao, Y., Qin, B., Clercq, O. D., Hoste, V.,
Apidianaki, M., Tannier, X., Loukachevitch, N. V.,
Kotelnikov, E. V., Bel, N., Zafra, S. M. J., and
Eryigit, G. (2016). Semeval-2016 task 5: Aspect
based sentiment analysis. In Proceedings of the
10th International Workshop on Semantic Evaluation,
SemEval@NAACL-HLT 2016, San Diego, CA, USA,
June 16-17, 2016.
Poria, S., Cambria, E., and Gelbukh, A. F. (2016). Aspect
extraction for opinion mining with a deep convolu-
tional neural network. Knowl. Based Syst., 108:42–
49.
Ruder, S., Ghaffari, P., and Breslin, J. G. (2016). INSIGHT-
1 at semeval-2016 task 5: Deep learning for multilin-
gual aspect-based sentiment analysis. In Proceedings
of the 10th International Workshop on Semantic Eval-
uation, SemEval@NAACL-HLT 2016, San Diego, CA,
USA, June 16-17, 2016.
Song, Y., Wang, J., Jiang, T., Liu, Z., and Rao, Y. (2019).
Attentional encoder network for targeted sentiment
classification. CoRR, abs/1902.09314.
Tang, D., Qin, B., Feng, X., and Liu, T. (2016a). Ef-
fective lstms for target-dependent sentiment classifi-
cation. In COLING 2016, 26th International Con-
ference on Computational Linguistics, Proceedings of
the Conference: Technical Papers, December 11-16,
2016, Osaka, Japan.
Tang, D., Qin, B., and Liu, T. (2016b). Aspect level sen-
timent classification with deep memory network. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2016, Austin, Texas, USA, November 1-4, 2016.
Thet, T. T., Na, J., and Khoo, C. S. G. (2010). Aspect-
based sentiment analysis of movie reviews on discus-
sion boards. J. Inf. Sci., 36(6):823–848.
Wang, Y., Huang, M., Zhu, X., and Zhao, L. (2016).
Attention-based LSTM for aspect-level sentiment
classification. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2016, Austin, Texas, USA, November 1-4,
2016.
Wu, H., Gu, Y., Sun, S., and Gu, X. (2016). Aspect-
based opinion summarization with convolutional neu-
ral networks. In 2016 International Joint Conference
on Neural Networks, IJCNN 2016, Vancouver, BC,
Canada, July 24-29, 2016, pages 3157–3163. IEEE.
Young, T., Hazarika, D., Poria, S., and Cambria, E. (2018).
Recent trends in deep learning based natural language
processing [review article]. IEEE Comput. Intell.
Mag., 13(3):55–75.
CNN-LSTM-CRF for Aspect-Based Sentiment Analysis: A Joint Method Applied to French Reviews
505