rescue vehicles. For example, how do the model
vehicles behave if an accident occurs? What is the
behaviour of the car if the radar sensor unexpectedly
fails or there are unexpected obstacles on the road, for
example, a deer crossing? These questions can be
answered after the sim-to-real transfer.
REFERENCES
Al-amri, S. S., Kalyankar, N. V., Khamitkar, S. D., 2010.
Image Segmentation by Using Threshold Techniques.
Journal of Computing, Volume 2, Issue 5.
Assidiq, A. A., Khalifa, O. O., Islam, M. R., Khan, S., 2008.
Real time lane detection for autonomous vehicles.
Computer and Communication Engineering, ICCCE
2008, International Conference on Kuala Lumpur, pp.
82-88.
Audiworld, 2007. The Audi Q7 4.2 TDI. Audiworld.com.
[online]. Available at: https://www.audiworld.com/
articles/the-audi-q7-4-2-tdi/. Accessed: 22/10/2020.
Beltrán, J., Guindel, C., Moreno, F. M., Cruzado, D.,
García, F., De La Escalera, A., 2018. BirdNet: A 3D
Object Detection Framework from LiDAR Information.
2018 21st International Conference on Intelligent
Transportation Systems (ITSC), IEEE, ISBN 978-1-
7281-0324-2.
Brunner, D., 2017. Frame Rate: A Beginner’s Guide.
Techsmith.com. [online]. Available at:
https://www.techsmith.com/blog/frame-rate-
beginners-guide/#:~:text=they're%20used.-
,24fps,and%20viewed%20at%2024%20fps. Accessed:
21/11/2020.
Bui, H. M., Lech, M., Cheng, E., Nelille, K., Burnett, I. S,
2016. Using grayscale images for object recognition
with convolutional-recursive neural network. In
Proceedings of the IEEE 6th International Conference
on Communications and Electronics, pp. 321-325.
Canny, J., 1986. A Computational Approach to Edge
Detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Volume PAMI-8, No 6, pp. 679-
698.
Canu, S., 2018. Lines detection with Hough Transform –
OpenCV 3.4 with python 3 Tutorial 21. Pysource.com.
[online]. Available at: https://pysource.com
/2018/03/07/lines-detection-with-hough-transform-
opencv-3-4-with-python-3-tutorial-21/. Accessed:
15/09/2020.
Kahn, G., Abbeel, P., Levine, S., 2020. LaND: Learning to
Navigate from Disengagements. arXiv: 2010.04689
Kim, Z. W., 2008. Robust Lane Detection and Tracking in
Challenging Scenarios. IEEE Trans IEEE Transactions
on Intelligent Transportation Systems, Volume 9, Issue
1, pp. 16-26.
Kuzmic, J., Rudolph, G., 2020. Unity 3D Simulator of
Autonomous Motorway Traffic Applied to Emergency
Corridor Building. In Proceedings of the 5th
International Conference on Internet of Things, Big
Data and Security (IoTBDS), Volume 1: IoTBDS,
ISBN 978-989-758-426-8, pp. 197-204.
Li, P., Chen, X., Shen, S., 2019. Stereo R-CNN Based 3D
Object Detection for Autonomous Driving. Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 7644-7652.
Nedevschi, S., Schmidt, R., Graf, T., Danescu, R., Frentui,
D., Marita, T., Oniga, F., Pocol, C., 2004. 3D lane
detection system based on stereovision. Intelligent
Transportation Systems. In Proceedings of the 7th
International IEEE Conference, pp. 161-166.
Pan, X., Shi, J., Luo, P., Wang, X., Tang, X., 2018. Spatial
As Deep: Spatial CNN for Traffic Scene
Understanding. AAAI Conference on Artificial
Intelligence (AAAI).
Tan, J., Zhang, T., Coumans, E., Iscen, A., Bai, Y., Hafner,
D., Bohez, S., Vanhoucke V., 2018. Sim-To-Real:
Learning Agile Locomotion For Quadruped Robots.
Proceedings of Robotics: Science and System XIV,
ISBN 978-0-9923747-4-7.
TensorFlow, 2020. TensorFlow Core v2.3.0 -
tf.keras.layers.Conv2D. Tensorflow.org. [online].
Available at: https://www.tensorflow.org/api_docs/
python/tf/keras/layers/Conv2D. Accessed: 13/09/2020.
Texas Instruments, 2021. Front camera. Automotive front
camera integrated circuits and reference designs.
Camera SerDes (DS90UB953-Q1). Ti.com. [online].
Available at: https://www.ti.com/solution/automotive-
front-camera. Accessed: 09/02/2021.
Tsuda, H., 2001. Nissan Demos New Lane Keeping
Products. Web.archive.org. [online]. Available at:
https://web.archive.org/web/20050110073214/http://iv
source.net/archivep/2001/feb/010212_nissandemo.htm
l. Accessed: 22/10/2020.
Wang, Y., Teoh, E. K., Shen, D., 2004. Lane detection and
tracking using B-Snake. Image and Vision Computing,
Volume 22, Issue 4, pp. 269-280.
Web.archive, 2005. Avoiding accidents. Webarchive.org.
[online]. Available at: https://web.archive.org/web
/20051017024140/http://www.developpement-
durable.psa.fr/en/realisation.php?niv1=5&niv2=52&ni
v3=2&id=2708. Accessed: 22/10/2020.
Winkel, S., 2020. Efficient lane detection for model cars in
simulation and in reality (German: Effiziente
Spurerkennung für Modellautos in Simulation und
Realität). Bachelor’s thesis, TU Dortmund University.
Yadav, P., 2015. Re: Which is best for image classification,
RGB or grayscale?. Researchgate.net. [online].
Available at: https://www.researchgate.net/post/
Which_is_best_for_image_classification_RGB_or_gra
yscale/55e962155dbbbd562d8b4591/citation/downloa
d. Accessed: 24/11/2020.
Zou, Q., Jiang, H., Dai, Q., Yue, Y., Chen, L., Wang, Q.,
2020. Robust Lane Detection from Continuous Driving
Scenes Using Deep Neural Networks. IEEE
Transactions on Vehicular Technology, Volume 69,
Issue 1, pp. 41-54.