on Computer Vision and Pattern Recognition, pages
580–587.
Girshick, R., Radosavovic, I., Gkioxari, G., Doll
´
ar, P.,
and He, K. (2018). Detectron. https://github.com/
facebookresearch/detectron.
He, K., Gkioxari, G., Doll
´
ar, P., and Girshick, R. (2017).
Mask r-cnn. In 2017 IEEE International Conference
on Computer Vision (ICCV), pages 2980–2988.
Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., and
Igel, C. (2013). Detection of traffic signs in real-world
images: The german traffic sign detection benchmark.
In The 2013 International Joint Conference on Neural
Networks (IJCNN), pages 1–8.
Huang, S. C., Lin, H. Y., and Chang, C. C. (2017). An in-
car camera system for traffic sign detection and recog-
nition. In 2017 Joint 17th World Congress of Inter-
national Fuzzy Systems Association and 9th Interna-
tional Conference on Soft Computing and Intelligent
Systems (IFSA-SCIS), pages 1–6.
Lin, H.-Y., Chang, C.-C., Tran, V. L., and Shi, J.-H.
(2020). Improved traffic sign recognition for in-car
cameras. Journal of the Chinese Institute of Engi-
neers, 43(3):300–307.
Liu, C., Li, S., Chang, F., and Wang, Y. (2019). Machine
vision based traffic sign detection methods: Review,
analyses and perspectives. IEEE Access, 7:86578–
86596.
Mogelmose, A., Trivedi, M. M., and Moeslund, T. B.
(2012). Vision-based traffic sign detection and analy-
sis for intelligent driver assistance systems: Perspec-
tives and survey. IEEE Transactions on Intelligent
Transportation Systems, 13(4):1484–1497.
Philipsen, M. P., Jensen, M. B., Møgelmose, A., Moeslund,
T. B., and Trivedi, M. M. (2015). Traffic light de-
tection: A learning algorithm and evaluations on chal-
lenging dataset. In 2015 IEEE 18th International Con-
ference on Intelligent Transportation Systems, pages
2341–2345.
Rajendran, S. P., Shine, L., Pradeep, R., and Vijayaragha-
van, S. (2019). Real-time traffic sign recognition us-
ing yolov3 based detector. In 2019 10th International
Conference on Computing, Communication and Net-
working Technologies (ICCCNT), pages 1–7.
Redmon, J. and Farhadi, A. (2017). Yolo9000: Better,
faster, stronger. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
6517–6525.
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. In Proceedings of the 28th Inter-
national Conference on Neural Information Process-
ing Systems - Volume 1, NIPS’15, page 91–99, Cam-
bridge, MA, USA. MIT Press.
Shrivastava, A., Gupta, A., and Girshick, R. (2016). Train-
ing region-based object detectors with online hard ex-
ample mining. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
761–769.
Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C.
(2012). Man vs. computer: Benchmarking machine
learning algorithms for traffic sign recognition. Neu-
ral Networks, 32:323 – 332. Selected Papers from
IJCNN 2011.
Tabernik, D. and Sko
ˇ
caj, D. (2020). Deep learning for large-
scale traffic-sign detection and recognition. IEEE
Transactions on Intelligent Transportation Systems,
21(4):1427–1440.
Wahyono, Kurnianggoro, L., Hariyono, J., and Jo, K.
(2014). Traffic sign recognition system for au-
tonomous vehicle using cascade svm classifier. In
IECON 2014 - 40th Annual Conference of the IEEE
Industrial Electronics Society, pages 4081–4086.
Yang, Y., Luo, H., Xu, H., and Wu, F. (2016). Towards real-
time traffic sign detection and classification. IEEE
Transactions on Intelligent Transportation Systems,
17(7):2022–2031.
Yuan, Y., Xiong, Z., and Wang, Q. (2019). Vssa-net: Verti-
cal spatial sequence attention network for traffic sign
detection. IEEE Transactions on Image Processing,
28(7):3423–3434.
Zaklouta, F. and Stanciulescu, B. (2012). Real-time
traffic-sign recognition using tree classifiers. IEEE
Transactions on Intelligent Transportation Systems,
13(4):1507–1514.
Zhang, J., Huang, M., Jin, X., and Li, X. (2017). A real-
time chinese traffic sign detection algorithm based on
modified yolov2. Algorithms, 10(4).
Zhu, Z., Liang, D., Zhang, S., Huang, X., Li, B., and Hu, S.
(2016). Traffic-sign detection and classification in the
wild. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2110–2118.
A Two-stage Learning Approach for Traffic Sign Detection and Recognition
283