(Information Technology Research Center) support
program(IITP-2020-2018-0-01431) and also under
the National Program for Excellence in SW (2015-
0-00908) both supervised by the IITP(Institute for In-
formation & Communications Technology Planning
& Evaluation).
REFERENCES
Chung, J., Gulcehre, C., Cho, K., and Bengio, Y.
(2014). Empirical evaluation of gated recurrent neu-
ral networks on sequence modeling. arXiv preprint
arXiv:1412.3555.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.
Golovanov, S., Tselousov, A., Kurbanov, R., and
Nikolenko, S. I. (2020). Lost in conversation: A con-
versational agent based on the transformer and trans-
fer learning. In The NeurIPS’18 Competition, pages
295–315. Springer.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Liu, Q., Chen, Y., Chen, B., Lou, J.-G., Chen, Z., Zhou, B.,
and Zhang, D. (2020). You impress me: Dialogue gen-
eration via mutual persona perception. arXiv preprint
arXiv:2004.05388.
Mazar
´
e, P.-E., Humeau, S., Raison, M., and Bordes, A.
(2018). Training millions of personalized dialogue
agents. arXiv preprint arXiv:1809.01984.
Miao, Y., Yu, L., and Blunsom, P. (2016). Neural varia-
tional inference for text processing. In International
conference on machine learning, pages 1727–1736.
Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. (2018). Improving language understanding with un-
supervised learning. Technical report, OpenAI.
Serban, I. V., Sordoni, A., Lowe, R., Charlin, L., Pineau, J.,
Courville, A., and Bengio, Y. (2016). A hierarchical
latent variable encoder-decoder model for generating
dialogues. arXiv preprint arXiv:1605.06069.
Sordoni, A., Bengio, Y., Vahabi, H., Lioma, C., Grue Si-
monsen, J., and Nie, J.-Y. (2015). A hierarchical re-
current encoder-decoder for generative context-aware
query suggestion. In Proceedings of the 24th ACM In-
ternational on Conference on Information and Knowl-
edge Management, pages 553–562.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. In Advances in
neural information processing systems, pages 5998–
6008.
Vinyals, O. and Le, Q. (2015). A neural conversational
model. arXiv preprint arXiv:1506.05869.
Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz,
M., et al. (2019a). Huggingface’s transformers: State-
of-the-art natural language processing. ArXiv, pages
arXiv–1910.
Wolf, T., Sanh, V., Chaumond, J., and Delangue, C.
(2019b). Transfertransfo: A transfer learning
approach for neural network based conversational
agents. arXiv preprint arXiv:1901.08149.
Zhang, S., Dinan, E., Urbanek, J., Szlam, A., Kiela, D., and
Weston, J. (2018). Personalizing dialogue agents: I
have a dog, do you have pets too? arXiv preprint
arXiv:1801.07243.
Zhang, Y., Sun, S., Galley, M., Chen, Y.-C., Brock-
ett, C., Gao, X., Gao, J., Liu, J., and Dolan, B.
(2019). Dialogpt: Large-scale generative pre-training
for conversational response generation. arXiv preprint
arXiv:1911.00536.
ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence
1232