quences from other diseases and train models to iden-
tify correctly the samples with SARS-CoV-2. An-
other research line is to use genetic programming or
grammatical evolution to evolve classifiers and MAP-
Elites to keep a trade off between quality and diversity
in the solutions and compare the evolutionary meth-
ods against state-of-the-art machine learning, such as;
(i) gradient boosting, and (ii) least absolute shrinkage
and selection operator (LASSO).
ACKNOWLEDGEMENTS
This work was conducted with the financial sup-
port of the Science Foundation Ireland (SFI) Centre
for Research Training in Artificial Intelligence un-
der Grant No. 18/CRT/6223, by the research Grant
No. 16/IA/4605, and by Lero, the Irish Software
Engineering Research Centre (www.lero.ie). The
fourth author is partially financed by the Coordenac¸
˜
ao
de Aperfeic¸oamento de Pessoal de N
´
ıvel Superior -
Brasil (CAPES) - Finance Code 001.
REFERENCES
Abc7news (2020). ’extremely bogus’: Elon Musk
claims he tested positive and negative for
COVID-19. available: https://abc7news.com/
elon-musk-covid-tests-test-rapid-antigen-4/
7938369/ [accessed 16 Nov 2020].
Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M.,
Keith Roberts, P. W., et al. (2018). Molecular biology
of the cell.
Alkady, W., Zanaty, M., and Afify, H. M. (2020). Compu-
tational predictions for protein sequences of covid-19
virus via machine learning algorithms.
Bohr, A. and Memarzadeh, K. (2020). The rise of artificial
intelligence in healthcare applications. In Artificial In-
telligence in Healthcare, pages 25–60. Elsevier.
Cazenille, L. (2018). Qdpy: A python framework for
quality-diversity.
Chen, J., Antipov, E., Lemieux, B., Cede
˜
no, W., and Wood,
D. H. (1999). Dna computing implementing genetic
algorithms. Evolution as Computation, pages 39–49.
Cm.jefferson.edu. DNA and RNA. available: https://cm.
jefferson.edu/learn/dna-and-rna/ [accessed 16 Nov
2020].
Compeau, P. E., Pevzner, P. A., and Tesler, G. (2011). Why
are de bruijn graphs useful for genome assembly? Na-
ture biotechnology, 29(11):987.
Davis, L. (1991). Handbook of genetic algorithms.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary Compu-
tation, 6(2):182–197.
Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau,
M., and Gagn
´
e, C. (2012). DEAP: Evolutionary algo-
rithms made easy. Journal of Machine Learning Re-
search, 13:2171–2175.
Genome.gov. Protein. available: https://www.genome.gov/
genetics-glossary/Protein [accessed 17 Oct 2020].
Gorbalenya, A., Baker, S., Baric, R., de Groot, R., Drosten,
C., Gulyaeva, A., Haagmans, B., Lauber, C., Leon-
tovich, A., Neuman, B., Group, C. S., et al. (2020).
The species severe acute respiratory syndrome related
coronavirus: classifying 2019-nCoV and naming it
SARS-CoV-2. Nature Microbiology, 5(4):536–544.
Hamley, I. W. (2020). Introduction to Peptide Science. John
Wiley & Sons.
Kaehler, R. (2017). K-mer Analysis pipeline for Clas-
sification of DNA Sequences from Metagenomic
Samples. Master’s thesis, University of Mon-
tana, 32 Campus Drive Missoula, MT 59812, USA.
https://scholarworks.umt.edu/etd/10967.
Khailany, R. A., Safdar, M., and Ozaslan, M. (2020). Ge-
nomic characterization of a novel SARS-CoV-2. Gene
reports, page 100682.
Kim, D., Soo-Yong, S., In-Hee, L., and Byoung-Tak,
Z. (2002). Nacst/seq: A sequence design system
with multiobjective optimization. In International
Workshop on DNA-Based Computers, pages 242–251.
Springer.
Malik, Y. A. (2020). Properties of Coronavirus and SARS-
CoV-2. The Malaysian Journal of Pathology, 42(1):3–
11.
Mouret, J.-B. and Clune, J. (2015). Illuminating
search spaces by mapping elites. arXiv preprint
arXiv:1504.04909.
NCBI (2020). Protein Sequences for SARS-CoV-2. avail-
able: https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/
virus?SeqType
s=Protein [accessed 16 Nov 2020].
Prawira, N. A. (2020). Spam and scam detection through
text analysis.
Quinonez, B., Pinto-Roa, D. P., Garc
´
ıa-Torres, M., Garc
´
ıa-
D
´
ıaz, M. E., N
´
unez-Castillo, C., and Divina, F. (2019).
Map-elites algorithm for features selection problem.
In AMW.
Rachel, G. (2020). Potential COVID-19 vaccines
get a boost from machine learning. avail-
able: https://www.csail.mit.edu/news/potential-covid-
19-vaccines-get-boost-machine-learning [accessed 17
Oct 2020].
Randhawa, G. S., Soltysiak, M. P., El Roz, H., de Souza,
C. P., Hill, K. A., and Kari, L. (2020). Machine learn-
ing using intrinsic genomic signatures for rapid clas-
sification of novel pathogens: COVID-19 case study.
Plos one, 15(4):e0232391.
Romano, M., Ruggiero, A., Squeglia, F., Maga, G., and
Berisio, R. (2020). A Structural View of SARS-
CoV-2 RNA Replication machinery: RNA Synthesis,
Proofreading and Final Capping. Cells, 9(5):1267.
Solis-Reyes, S., Avino, M., Poon, A., and Kari, L. (2018).
An open-source k-mer based machine learning tool
for fast and accurate subtyping of hiv-1 genomes.
PLoS One, 13(11):e0206409.
Wetsman, N. (2020). Accuracy and precision. avail-
able: https://www.theverge.com/2020/4/9/21213730/
coronavirus-test-false-negative-results-isolation-
treatment [accessed 18 Nov 2020].
ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence
1248