according the proposed model: all the relevant part of
the solution may be described in terms of generic LB
functionalities, defining the roles that such PdM
components play in the whole PdM solution.
Generalisation dictated by the model allows easy
reconfiguration and extensibility of the production
systems, increasing the integration of all the different
parts of a PdM solution.
ACKNOWLEDGEMENTS
This paper belongs to a research path funded by
University of Catania (PIA.CE.RI. 2020-2022 Linea
2—GOSPEL Project—Principal investigator A.
Costa—Code 61722102132).
REFERENCES
Ahmad, R., & Kamaruddin, S., 2012. An overview of time-
based and condition-based maintenance in industrial
application. Computers & Industrial Engineering, pp.
135-149.
Birtel, M., Mohr, F., Hermann, J., Bertram, P., &
Ruskowski, M., 2018. Requirements for a Human-
Centered Condition Monitoring in Modular Production
Environments. IFAC-PapersOnLine, pp. 909-914.
Cavalieri, S., & Salafia, M. G., 2020 (2020a). Asset
Administration Shell for PLC Representation Based on
IEC 61131–3. IEEE Access, pp. 142606-142621.
Cavalieri, S., & Salafia, M. G., 2020 (2020b). Insights into
Mapping Solutions Based on OPC UA Information
Model Applied to the Industry 4.0 Asset Administration
Shell. Computers, 9(2), 28.
DIN, 2016. DIN SPEC 91345:2016-04, Reference
Architecture Model Industrie 4.0 (RAMI4.0). Berlin:
Beuth Verlag GmbH.
Groba, C., Cech, S., Rosenthal, F., & Gossling, A., 2007.
Architecture of a Predictive Maintenance Framework.
6th International Conference on Computer Information
Systems and Industrial Management Applications
(CISIM'07). Minneapolis, MN, USA.
Infosys, 2018. Interoperability between IIC architecture &
Industry 4.0 Reference Architecture for Industrial
Assets. Retrieved 07 13, 2020, from
https://www.infosys.com/engineering-services/white-
papers/documents/industrial-internet-consortium-
architecture.pdf
Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on
machinery diagnostics and prognostics implementing
condition-based maintenance. Mechanical Systems and
Signal Processing, pp. 1483-1510.
Kagermann, H., Wahlster, W., & Helbig, J., 2013.
Recommendations for implementing the strategic
initiative INDUSTRIE 4.0. Final report of the Industrie
4.0 Working Group. Acatech, Frankfurt am Main.
Kampert, D., & Epple, U., 2012. Modeling asset
information for interoperable software systems. IEEE
10th International Conference on Industrial
Informatics. Beijing, China.
Khana W. Z., Rehmanb M. H., Zangotic H. M., Afzald, N.
Armia M. K., Salah K, 2019. Industrial Internet of
Things: Recent Advances, Enabling Technologies, and
Open Challenges. Computers & Electrical Engineering
81. DOI: 10.1016/j.compeleceng.2019.106522.
Lang, D., Grunau, S., Wisniewski, L., & Jasperneite, J.,
2019. Utilization of the Asset Administration Shell to
Support Humans During the Maintenance Process.
IEEE 17th International Conference on Industrial
Informatics (INDIN). Helsinki.
Liao, Y., Deschamps, F., Loures, E. de F. R., & Ramos, L.
F. P., 2017. Past, present and future of Industry 4.0—A
systematic literature review and research agenda
proposal. International Journal of Production
Research, pp. 3609–3629.
Motaghare, O., Pillai, A. S., & Ramachandran, K., 2018.
Predictive Maintenance Architecture. IEEE
International Conference on Computational Intelligence
and Computing Research (ICCIC). Madurai, India.
Moyne, J., Qamsane, Y., Balta, E. C., Kovalenko, I., Faris,
J., Barton, K., & Tilbury, D. M., 2020. A Requirements
Driven Digital Twin Framework: Specification and
Opportunities. IEEE Access,
pp. 107781-107801.
Panda, S. K., Schröder, T., Wisniewski, L., & Diedrich, C.
(2018). Plug Produce Integration of Components into
OPC UA based data-space. IEEE 23rd International
Conference on Emerging Technologies and Factory
Automation (ETFA). Turin, Italy.
Platform Industrie 4.0, 2016. Structure of the
Administration Shell - Continuation of the
Development of the Reference Model for the Industrie
4.0 Component. Berlin: Federal Ministry for Economic
Affairs and Energy (BMWi).
Platform Industrie 4.0, 2018. The Standardisation Roadmap
of Predictive Maintenance for Sino-German Industrie 4.
Federal Ministry of Economic Affairs and Energy.
Platform Industrie 4.0, ZVEI, 2019. Details of the Asset
Administration Shell.
Tantik, E., & Anderl, R., 2017. Potentials of the Asset
Administration Shell of Industrie 4.0 for Service-
Oriented Business Models. Procedia CIRP, pp. 363–
368.
Strauß, P., Schmitz, M., Wöstmann, R., & Deuse, J., 2018.
Enabling of Predictive Maintenance in the Brownfield
through Low-Cost Sensors, an IIoT-Architecture and
Machine Learning. IEEE International Conference on
Big Data (Big Data). Seattle, WA, USA.
Xu, L. D., Xu, E. L., & Li, L., 2018. Industry 4.0: State of
the art and future trends. International Journal of
Production Research, pp. 2941–2962.
Wollschlaeger, M., Theurich, S., Winter, A., Lubnau, F., &
Paulitsch, C., 2015. A reference architecture for
condition monitoring. IEEE World Conference on
Factory Communication Systems (WFCS). Palma de
Mallorca, Spain.