Eriksson, L. H. and As, B. (1997). Automotive
radar for adaptive cruise control and collision warn-
ing/avoidance. In Radar 97 (Conf. Publ. No. 449),
pages 16–20.
Ester, M., Kriegel, H., Sander, J., and Xu, X. (1996). A
density-based algorithm for discovering clusters in
large spatial databases with noise. In Simoudis, E.,
Han, J., and Fayyad, U. M., editors, Proceedings of the
Second International Conference on Knowledge Dis-
covery and Data Mining (KDD-96), Portland, Ore-
gon, USA, pages 226–231. AAAI Press.
Everingham, M., Eslami, S. M. A., Gool, L. V., Williams,
C. K. I., Winn, J. M., and Zisserman, A. (2015). The
pascal visual object classes challenge: A retrospec-
tive. Int. J. Comput. Vis., 111(1):98–136.
Fan, H. and Yang, Y. (2019). PointRNN: Point recurrent
neural network for moving point cloud processing.
pre-print, arXiv:1910.08287.
Faust, J. and Pradeep, V. (2020). Message filter: Ap-
proximate time. http://wiki.ros.org/message filters/
ApproximateTime. Accessed: 2020-04-30.
Feng, D., Haase-Schutz, C., Rosenbaum, L., Hertlein,
H., Gl
¨
aser, C., Timm, F., Wiesbeck, W., and Diet-
mayer, K. (2020). Deep multi-modal object detection
and semantic segmentation for autonomous driving:
Datasets, methods, and challenges. IEEE Transac-
tions on Intelligent Transportation Systems, PP:1–20.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: A paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Commun. ACM, 24(6):381–395.
Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013).
Vision meets robotics: The KITTI dataset. Int. J.
Robotics Res., 32(11):1231–1237.
Heinzler, R., Piewak, F., Schindler, P., and Stork, W. (2020).
CNN-based LiDAR point cloud de-noising in adverse
weather. IEEE Robotics Autom. Lett., 5(2):2514–
2521.
Holder, M., Hellwig, S., and Winner, H. (2019a). Real-time
pose graph SLAM based on radar. In 2019 IEEE In-
telligent Vehicles Symposium, IV 2019, Paris, France,
June 9–12, 2019, pages 1145–1151. IEEE.
Holder, M., Linnhoff, C., Rosenberger, P., Popp, C., and
Winner, H. (2019b). Modeling and simulation of radar
sensor artifacts for virtual testing of autonomous driv-
ing. In 9. Tagung Automatisiertes Fahren.
Huber, P. J. (1964). Robust estimation of a location param-
eter. Ann. Math. Statist., 35(1):73–101.
Kellner, D., Klappstein, J., and Dietmayer, K. (2012). Grid-
based DBSCAN for clustering extended objects in
radar data. In 2012 IEEE Intelligent Vehicles Sympo-
sium, IV 2012, Alcal de Henares, Madrid, Spain, June
3–7, 2012, pages 365–370. IEEE.
Meyer, M. and Kuschk, G. (2019). Automotive radar
dataset for deep learning based 3d object detection.
In 2019 16th European Radar Conference (EuRAD),
pages 129–132.
Mur-Artal, R., Montiel, J. M. M., and Tard
´
os, J. D. (2015).
ORB-SLAM: A versatile and accurate monocular
SLAM system. IEEE Trans. Robotics, 31(5):1147–
1163.
OpenStreetMap Contributors (2017). Planet dump re-
trieved from https://planet.osm.org. https://www.
openstreetmap.org.
Piewak, F., Pinggera, P., Sch
¨
afer, M., Peter, D., Schwarz,
B., Schneider, N., Enzweiler, M., Pfeiffer, D., and
Z
¨
ollner, J. M. (2018). Boosting LiDAR-based seman-
tic labeling by cross-modal training data generation.
In Leal-Taix
´
e, L. and Roth, S., editors, Computer Vi-
sion - ECCV 2018 Workshops - Munich, Germany,
September 8-14, 2018, Proceedings, Part VI, volume
11134 of Lecture Notes in Computer Science, pages
497–513. Springer.
Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017). Point-
net++: Deep hierarchical feature learning on point sets
in a metric space. In Guyon, I., von Luxburg, U., Ben-
gio, S., Wallach, H. M., Fergus, R., Vishwanathan, S.
V. N., and Garnett, R., editors, Advances in Neural In-
formation Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, 4-9
December 2017, Long Beach, CA, USA, pages 5099–
5108.
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., and Ng, A. (2009). ROS: An
open-source robot operating system. volume 3.
Rock, J., T
´
oth, M., Messner, E., Meissner, P., and Pernkopf,
F. (2019). Complex signal denoising and interference
mitigation for automotive radar using convolutional
neural networks. In 22th International Conference
on Information Fusion, FUSION 2019, Ottawa, ON,
Canada, July 2-5, 2019, pages 1–8. IEEE.
Rusu, R. B. and Cousins, S. (2011). 3d is here: Point
cloud library (PCL). In IEEE International Confer-
ence on Robotics and Automation, ICRA 2011, Shang-
hai, China, 9-13 May 2011. IEEE.
Scaramuzza, D., Martinelli, A., and Siegwart, R. (2006).
A toolbox for easily calibrating omnidirectional cam-
eras. In 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2006, October
9-15, 2006, Beijing, China, pages 5695–5701. IEEE.
Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Pat-
naik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y., Caine,
B., Vasudevan, V., Han, W., Ngiam, J., Zhao, H., Tim-
ofeev, A., Ettinger, S., Krivokon, M., Gao, A., Joshi,
A., Zhang, Y., Shlens, J., Chen, Z., and Anguelov,
D. (2020). Scalability in perception for autonomous
driving: Waymo open dataset. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2020, Seattle, WA, USA, June 13-19, 2020,
pages 2443–2451. IEEE.
Thrun, S. and Montemerlo, M. (2006). The graph SLAM
algorithm with applications to large-scale mapping of
urban structures. Int. J. Robotics Res., 25(5–6):403–
429.
Werling, M. (2017). Optimale aktive Fahreingriffe:
F
¨
ur Sicherheits- und Komfortsysteme in Fahrzeugen,
pages 89–90. De Gruyter Oldenbourg.
Yin, W., Wang, X., Shen, C., Liu, Y., Tian, Z., Xu, S., Sun,
C., and Renyin, D. (2020). DiverseDepth: Affine-
Radar Artifact Labeling Framework (RALF): Method for Plausible Radar Detections in Datasets
31