Bureau of Meteorology. ([s.d.]). Recuperado 20 de
dezembro de 2018, de https://www.dropbox.com/s/
mo2zac1ahmcqcsj/BOM_csv.zip?dl=0
Caliński, T., & Harabasz, J. (1974). A dendrite method for
cluster analysis. Communications in Statistics, 3(1), 1–
27. https://doi.org/10.1080/03610927408827101
Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A Survey.
Mobile Networks and Applications, 19(2), 171–209.
https://doi.org/10/f5xhcd
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree
Boosting System. Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining - KDD ’16, 785–794.
https://doi.org/10.1145/2939672.2939785
Costa, F. S., Nassar, S. M., & Dantas, M. A. R. (2019). A
three level sensor ranking method based on active
perception. IECON 2019 - 45th Annual Conference of
the IEEE Industrial Electronics Society, 1, 2889–2895.
https://doi.org/10.1109/IECON.2019.8927612
Costa, F. S., Nassar, S. M., Gusmeroli, S., Schultz, R.,
Conceição, A. G. S., Xavier, M., Hessel, F., & Dantas,
M. A. R. (2020). FASTEN IIoT: An Open Real-Time
Platform for Vertical, Horizontal and End-To-End
Integration. Sensors, 20(19), 5499. https://doi.org/10/
ghc8cq
Davies, D. L., & Bouldin, D. W. (1979). A Cluster
Separation Measure. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-1(2), 224–
227. https://doi.org/10.1109/TPAMI.1979.4766909
Dilli, R., Argou, A., Pilla, M., Pernas, A. M., Reiser, R., &
Yamin, A. (2018). Fuzzy Logic and MCDA in IoT
Resources Classification. Proceedings of the 33rd
Annual ACM Symposium on Applied Computing, 6.
https://doi.org/10.1145/3167132.3167216
Fathy, Y., Barnaghi, P., & Tafazolli, R. (2018). Large-Scale
Indexing, Discovery, and Ranking for the Internet of
Things (IoT). ACM Comput. Surv., 51(2), 53.
https://doi.org/10.1145/3154525
Hopkins, B., & Skellam, J. G. (1954). A New Method for
determining the Type of Distribution of Plant
Individuals. Annals of Botany, 18(2), 213–227.
https://doi.org/10/gfwpfs
Intel Lab Data. ([s.d.]). Recuperado 20 de dezembro de
2018, de http://db.csail.mit.edu/labdata/labdata.html
Kertiou, I., Benharzallah, S., Kahloul, L., Beggas, M.,
Euler, R., Laouid, A., & Bounceur, A. (2018). A
dynamic skyline technique for a context-aware
selection of the best sensors in an IoT architecture. Ad
Hoc Networks, 81, 14. https://doi.org/10.1016/j.adhoc.
2018.08.011
Neha, & Saxena, S. (2016). Vector method for ranking of
sensors in IoT. 2016 International Conference on
Inventive Computation Technologies (ICICT), 3, 5.
https://doi.org/10.1109/INVENTIVE.2016.7830231
NOAA
. ([s.d.]). Recuperado 20 de dezembro de 2018, de
https://tidesandcurrents.noaa.gov/gmap3/
Nunes, L. H., Estrella, J. C., Perera, C., Reiff-Marganiec,
S., & Delbem, A. C. B. (2018). The elimination-
selection based algorithm for efficient resource
discovery in Internet of Things environments. 2018
15th IEEE Annual Consumer Communications
Networking Conference (CCNC), 7. https://doi.org/
10.1109/CCNC.2018.8319280
Ostermaier, B., Römer, K., Mattern, F., Fahrmair, M., &
Kellerer, W. (2010). A real-time search engine for the
Web of Things. 2010 Internet of Things (IOT), 1–8.
https://doi.org/10.1109/IOT.2010.5678450
Pascual, D., Pla, F., & Sánchez, J. S. (2010). Cluster
validation using information stability measures. Pattern
Recognition Letters, 31(6), 454–461. https://doi.org/10/
dsk4hq
Pattar, S., Buyya, R., Venugopal, K. R., Iyengar, S. S., &
Patnaik, L. M. (2018). Searching for the IoT Resources:
Fundamentals, Requirements, Comprehensive Review,
and Future Directions. IEEE Communications Surveys
Tutorials, 20(3), 31. https://doi.org/10.1109/COMST.
2018.2825231
Perera, C., Zaslavsky, A., Liu, C. H., Compton, M.,
Christen, P., & Georgakopoulos, D. (2014). Sensor
Search Techniques for Sensing as a Service
Architecture for the Internet of Things. IEEE Sensors
Journal, 15(2), 15. https://doi.org/10.1109/JSEN.2013.
2282292
Phenonet. ([s.d.]). Recuperado 24 de fevereiro de 2019, de
https://www.dropbox.com/s/sizmdrh7l78n1v5/csv.tar.
gz?dl=0
Ruta, M., Scioscia, F., Pinto, A., Gramegna, F., Ieva, S.,
Loseto, G., & Di Sciascio, E. (2019). CoAP-based
collaborative sensor networks in the Semantic Web of
Things. Journal of Ambient Intelligence and
Humanized Computing, 10(7), 18.
https://doi.org/10.1007/s12652-018-0732-4
Schiffman, H. R. (2001). Sensation and Perception: An
Integrated Approach. In Sensation and Perception: An
Integrated Approach (Edição: 5th, p. 12). John Wiley
& Sons.
Shi, H., Wang, H., Huang, Y., Zhao, L., Qin, C., & Liu, C.
(2019). A hierarchical method based on weighted
extreme gradient boosting in ECG heartbeat
classification. Computer Methods and Programs in
Biomedicine, 171, 1–10. https://doi.org/10.1016/j.
cmpb.2019.02.005
Skarmeta, A. F., Santa, J., Martínez, J. A., Parreira, J. X.,
Barnaghi, P., Enshaeifar, S., Beliatis, M. J., Presser, M.
A., Iggena, T., Fischer, M., Tönjes, R., Strohbach, M.,
Sforzin, A., & Truong, H. (2018). IoTCrawler:
Browsing the Internet of Things. Proceedings of The
2018 Global IoT Summit (GIoTS), 6.
http://epubs.surrey.ac.uk/846315/
Wang, H., Tan, C. C., & Li, Q. (2010). Snoogle: A Search
Engine for Pervasive Environments. IEEE
Transactions on Parallel and Distributed Systems,
21(8), 15. https://doi.org/10.1109/TPDS.2009.145
Wang, W., Yao, F., De, S., Moessner, K., & Sun, Z. (2015).
A ranking method for sensor services based on
estimation of service access cost. Information Sciences,
319, 17. https://doi.org/10.1016/j.ins.2015.05.029
Zadeh, L. A. (1965). Fuzzy sets. Information and Control,
8(3), 338–353. https://doi.org/10.1016/S0019-
9958(65)90241-X