Lucchetti, A., Ongini, C., Formentin, S., Savaresi, S. M.,
and Del Re, L. (2016). Automatic recognition of driv-
ing scenarios for adas design. IFAC-PapersOnLine,
49(11):109–114.
Menzel, T., Bagschik, G., and Maurer, M. (2018). Scenarios
for development, test and validation of automated ve-
hicles. In 2018 IEEE Intelligent Vehicles Symposium
(IV), pages 1821–1827. IEEE.
Montanari, F., German, R., and Djanatliev, A. (2020). Pat-
tern recognition for driving scenario detection in real
driving data. In IEEE Intelligent Vehicles Symposium,
IV 2020, Las Vegas, NV, USA, October 19 - November
13, 2020, pages 590–597. IEEE.
Perslev, M., Jensen, M., Darkner, S., Jennum, P. J., and Igel,
C. (2019). U-time: A fully convolutional network for
time series segmentation applied to sleep staging. In
Advances in Neural Information Processing Systems,
pages 4415–4426.
Ratner, A. J., De Sa, C. M., Wu, S., Selsam, D., and R
´
e,
C. (2016). Data programming: Creating large train-
ing sets, quickly. In Advances in neural information
processing systems, pages 3567–3575.
Ries, L., Stumpf, M., Bach, J., and Sax, E. (2020). Se-
mantic comparison of driving sequences by adapta-
tion of word embeddings. In 2020 IEEE 23rd Interna-
tional Conference on Intelligent Transportation Sys-
tems (ITSC), pages 1–7. IEEE.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical
image computing and computer-assisted intervention,
pages 234–241. Springer.
Sippl, C., Bock, F., Lauer, C., Heinz, A., Neumayer, T., and
German, R. (2019). Scenario-based systems engineer-
ing: An approach towards automated driving function
development. In 2019 IEEE International Systems
Conference (SysCon), pages 1–8. IEEE.
Springenberg, J. T., Dosovitskiy, A., Brox, T., and Ried-
miller, M. A. (2015). Striving for simplicity: The all
convolutional net. In Bengio, Y. and LeCun, Y., ed-
itors, 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Workshop Track Proceedings.
VDA QMC Working Group 13 / Automotive SIG (2015).
Automotive SPICE Process Assessment: Reference
Model. page 132.
Wang, Z., Yan, W., and Oates, T. (2017). Time series clas-
sification from scratch with deep neural networks: A
strong baseline. In 2017 International joint confer-
ence on neural networks (IJCNN), pages 1578–1585.
IEEE.
Wood, M., Robbel, P., Maass, M., Tebbens, R. D., Meijs,
M., Harb, M., Reach, J., Robinson, K., Wittmann, D.,
Srivastava, T., Bouzouraa, M. E., Liu, S., Wang, Y.,
Knobel, C., Boymanns, D., L
¨
ohning, M., Dehlink, B.,
Kaule, D., Kr
¨
uger, R., Frtunikj, J., Raisch, F., Gru-
ber, M., Steck, J., Mejia-Hernandez, J., Syguda, S.,
Bl
¨
uher, P., Klonecki, K., Schnarz, P., Wiltschko, T.,
Pukallus, S., Sedlaczek, K., Garbacik, N., Smerza,
D., Li, D., Timmons, A., Bellotti, M., O‘Brien, M.,
Sch
¨
ollhorn, M., Dannebaum, U., Weast, J., Tatourian,
A., Dornieden, B., Schnetter, P., Themann, P., Weid-
ner, T., and Schlicht, P. (2019). Safety first for auto-
mated driving. Technical report.
VEHITS 2021 - 7th International Conference on Vehicle Technology and Intelligent Transport Systems
64