Donno, M. de, Tange, K., & Dragoni, N. (2019).
Foundations and Evolution of Modern Computing
Paradigms: Cloud, IoT, Edge, and Fog. IEEE Access, 7,
150936–150948. https://doi.org/10.1109/ACCESS.
2019.2947652 (IEEE Access, 7, 150936-150948).
Fortino, G., Giordano, A., Guerrieri, A., Spezzano, G., &
Vinci, A. (2015). A Data Analytics Schema for Activity
Recognition in Smart Home Environments. In J. M.
García-Chamizo, G. Fortino, & S. F. Ochoa (Eds.),
Lecture Notes in Computer Science. Ubiquitous
Computing and Ambient Intelligence. Sensing,
Processing, and Using Environmental Information (Vol.
9454, pp. 91–102). Springer International Publishing.
https://doi.org/10.1007/978-3-319-26401-1_9
Gomes, H. M., Bifet, A., Read, J., Barddal, J. P.,
Enembreck, F., Pfharinger, B., Holmes, G., &
Abdessalem, T. (2017). Adaptive random forests for
evolving data stream classification. Machine Learning,
106(9-10), 1469–1495. https://doi.org/10.1007/s10994-
017-5642-8
Hasan, T., Kikiras, P., Leonardi, A., Ziekow, H., &
Daubert, J. (2015). Cloud-based IoT Analytics for the
Smart Grid: Experiences from a 3-year Pilot. In D. G.
Michelson, A. L. Garcia, W.-B. Zhang, J. Cappos, & M.
E. Darieby (Chairs), Proceedings of the 10th
International Conference on Testbeds and Research
Infrastructures for the Development of Networks &
Communities (TRIDENTCOM), Vancouver, Canada.
Klotz, J. H. (1995). Updating simple Linear Regression.
Statistica Sinica, 5(1), 399–403.
http://www.jstor.org/stable/24305577
Kreps, J. (2014). Questioning the Lambda Architecture:
The Lambda Architecture has its merits, but
alternatives are worth exploring.
https://www.oreilly.com/ideas/questioning-the-
lambda-architecture
Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R. H.,
Morrow, M. J., & Polakos, P. A. (2018). A
Comprehensive Survey on Fog Computing: State-of-
the-Art and Research Challenges. IEEE
Communications Surveys & Tutorials, 20(1), 416–464.
https://doi.org/10.1109/COMST.2017.2771153
OpenFog. (2017). OpenFog Reference Architecture for Fog
Computing.
Paredes ‐ Valverde, M. A., Alor ‐ Hernández, G.,
García ‐ Alcaráz, J. L., Del Salas ‐ Zárate, M. P.,
Colombo ‐ Mendoza, L. O., & Sánchez ‐
Cervantes, J. L. (2020). IntelliHome: An internet of
things‐based system for electrical energy saving in
smart home environment. Computational Intelligence,
36(1), 203–224. https://doi.org/10.1111/coin.12252
Popa, D., Pop, F., Serbanescu, C., & Castiglione, A. (2019).
Deep learning model for home automation and energy
reduction in a smart home environment platform. Neural
Computing and Applications, 31
(5), 1317–1337.
https://doi.org/10.1007/s00521-018-3724-6
Singh, S., & Yassine, A. (2019). Iot Big Data Analytics
with Fog Computing for Household Energy
Management in Smart Grids. In A.-S. K. Pathan, Z. M.
Fadlullah, & M. Guerroumi (Eds.), Lecture Notes of the
Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering: Vol. 256. Smart
Grid and Internet of Things: Second EAI International
Conference, SGIoT 2018, Niagara Falls, ON, Canada,
July 11, 2018, Proceedings (Vol. 256, pp. 13–22).
Springer International Publishing.
https://doi.org/10.1007/978-3-030-05928-6_2
Siow, E., Tiropanis, T., & Hall, W. (2018). Analytics for
the Internet of Things. ACM Computing Surveys, 51(4),
1–36. https://doi.org/10.1145/3204947
Statista. (2020, November 9). Number of Smart Homes
forecast worldwide from 2017 to 2025 (in millions).
https://www.statista.com/forecasts/887613/number-of-
smart-homes-in-the-smart-home-market-worldwide
Thalheim, B. (2012). The Science and Art of Conceptual
Modelling. In A. Hameurlain (Ed.), Lecture notes in
computer science Journal subline: Vol. 7600. Special
issue on database and expert systems applications (Vol.
7600, pp. 76–105). Springer. https://doi.org/10.1007/
978-3-642-34179-3_3
vom Brocke, J., Simons, A., Niehaves, B., Riemer, K.,
Plattfaut, R., & Cleven, A. (2009). Reconstructing the
Giant: On the Importance of Rigour in Documenting
the Literature Search Process. 17th European
Conference on Information Systems, Verona, Italy.
http://aisel.aisnet.org/ecis2009/161/
Yassein, M. B., Shatnawi, M. Q., Aljwarneh, S., & Al-
Hatmi, R. (2017). Internet of Things: Survey and open
issues of MQTT protocol. In 2017 International
Conference on Engineering & MIS (ICEMIS’2017):
University of Monastir, Monastir, Tunisia, 08-10 May,
2017: Proceedings (pp. 1–6). IEEE.
https://doi.org/10.1109/ICEMIS.2017.8273112
Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K.,
Jalali, F., Niakanlahiji, A., Kong, J., & Jue, J. P.
(2019). All one needs to know about fog computing and
related edge computing paradigms: A complete survey.
Journal of Systems Architecture, 98, 289–330.
https://doi.org/10.1016/j.sysarc.2019.02.009
Zschörnig, T., Wehlitz, R., & Franczyk, B. (2019). A Fog-
enabled Smart Home Analytics Platform. In
Proceedings of the 21st International Conference on
Enterprise Information Systems (pp. 616–622).
SCITEPRESS - Science and Technology Publications.
https://doi.org/10.5220/0007750006160622
Zschörnig, T., Wehlitz, R., & Franczyk, B. (2020). IoT
Analytics Architectures: Challenges, Solution
Proposals and Future Research Directions. In F.
Dalpiaz, J. Zdravkovic, & P. Loucopoulos (Eds.),
Lecture Notes in Business Information Processing.
Research Challenges in Information Science (Vol. 385,
pp. 76–92). Springer International Publishing.
https://doi.org/10.1007/978-3-030-50316-1_5
Zschörnig, T., Windolph, J., Wehlitz, R., & Franczyk, B.
(2020a). A Cloud-based Analytics Architecture for the
Application of Online Machine Learning Algorithms
on Data Streams in Consumer-centric Internet of
Things Domains. In Proceedings of the 5th
International Conference on Internet of Things, Big
Data and Security
(pp. 189–196). SCITEPRESS -