REFERENCES
Armato, S.G., McLennan, G., Bidaut, L. et al. (2011). The
Lung Image Database Consortium (LIDC) and Image
Database Resource Initiative (IDRI): a completed
reference database of lung nodules on CT scans.
Medical Physics, 38(2), 915-31. doi: 10.1118/
1.3528204
EGISZ, Unified state information system in the field of
healthcare 2017 (№ 242-FZ) (Russia)
The Health Insurance Portability and Accountability Act
1996 (HIPAA) (U.S.)
Alder, S. (2017). What is Considered PHI Under HIPAA?
HIPAA Journal. https://www.hipaajournal.com/
considered-phi-hipaa/
Alsudais, A. & Tchalian, H. (2018). Clustering Prominent
Named Entities in Topic-Specific Text Corpora. CoRR.
arXiv:1807.10800
ASTM International. (n.d.). Committee E31 on Healthcare
Informatics. Retrieved on September 2, 2020, from
https://www.astm.org/COMMITTEE/E31.htm
Catelli, R., Gargiulo, F., Casola, V., Pietro, G., Fujita, H. &
Esposito, M. (2020). Crosslingual named entity
recognition for clinical de-identification applied to a
COVID-19 Italian data set. Applied Soft Computing,
97(A), ISSN 1568-4946. doi:10.1016/j.asoc.2020.
106779
Federal Law on Personal Data 2006 (№ 152-FZ) (Russia)
Federal Law on the Fundamentals of Protection of the
Public Health 2020 (№ 303-FZ) (Russia)
Fifty-eighth World Health Assembly 2005 (WHA58.28)
https://apps.who.int/iris/bitstream/handle/10665/20378
/WHA58_28-en.pdf?sequence=1
Friedrich, M., Köhn, A., Wiedemann, G., & Biemann, C.
(2020). Adversarial learning of privacy-preserving text
representations for de-identification of medical records.
Paper presented at the ACL 2019 - 57th Annual Meeting
of the Association for Computational Linguistics,
Proceedings of the Conference, 5829-5839.
Gholami, R. & Fakhari, N. (2017). Chapter 27 - Support
Vector Machine: Principles, Parameters, and
Applications. Handbook of Neural Computation, 515-
535, ISBN 9780128113189. doi.org:10.1016/B978-0-
12-811318-9.00027-2
Gligic, L., Kormilitzin, A., Goldberg, P., & Nevado-
Holgado, A. (2020). Named entity recognition in
electronic health records using transfer learning
bootstrapped neural networks. Neural Networks, 121,
132-139. doi:10.1016/j.neunet.2019.08.032
Guidance on De-identification of Protected Health
Information 2012 (U.S.) https://www.hhs.gov/hipaa/
for-professionals/privacy/special-topics/de-
identification/index.html
Hahn, U., & Oleynik, M. (2020). Medical information
extraction in the age of deep learning. Yearbook of
Medical Informatics, 29(1), 208-220. doi:10.1055/s-
0040-1702001
Health Insurance Portability and Accountability Act 1996
(HIPAA) (U.S.)
HL7 International. (2016, May 11). Electronic Health
Records. https://www.hl7.org/Special/committees/ehr/
overview.cfm
Jaćimović, J., Krstev, C., & Jelovac, D. (2015). A rule-
based system for automatic de-identification of medical
narrative texts. Informatica (Slovenia), 39(1)
, 45-53
Khin, K., Burckhardt, P. & Padman, R. (2018). A Deep
Learning Architecture for De-identification of Patient
Notes: Implementation and Evaluation. The 28th
Workshop on Information Technologies and Systems.
arXiv:1810.01570v1
Lee, HJ., Wu, Y., Zhang, Y., Xu, J., Xu, H. & Roberts, K.
(2017). A hybrid approach to automatic de-
identification of psychiatric notes. Journal of
Biomedical Informatics, 75, S19-S27, ISSN 1532-0464,
doi.org:10.1016/j.jbi.2017.06.006
Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., &
Kang, J. (2020). BioBERT: A pre-trained biomedical
language representation model for biomedical text
mining. Bioinformatics, 36(4), 1234-1240.
doi:10.1093/bioinformatics/btz682
Li, J., Sun, A., Han, J. & Li, C. (2020). A Survey on Deep
Learning for Named Entity Recognition. IEEE
Transactions on Knowledge and Data Engineering.
arXiv:1812.09449v3
Li, M., Scaiano, M., El Emam, K., & Malin, B. A. (2019).
Efficient Active Learning for Electronic Medical
Record De-identification. AMIA Joint Summits on
Translational Science proceedings. AMIA Joint
Summits on Translational Science, 2019, 462–471.
Liu, S., Sun, Y., Li, B., Wang, W. & Zhao X. (2019).
HAMNER: Headword Amplified Multi-span Distantly
Supervised Method for Domain Specific Named Entity
Recognition. Biomedical NER and Relation
Construction. arXiv:1912.01731v1
Martino, A. & Matrion, D. (2018). An introduction to the
maximum entropy approach and its application to
inference problems in biology. Heliyon, 4(4).
doi.org:10.1016/j.heliyon.2018.e00596
Menger, V., Scheepers, F., Wijk, L. M. & Spruit, M. (2018).
DEDUCE: A pattern matching method for automatic
de-identification of Dutch medical text. Telematics and
Informatics, 35(4), 727-736, ISSN 0736-5853,
doi.org:10.1016/j.tele.2017.08.002
Norgeot, B., Muenzen, K., Peterson, T.A. et al. (2020).
Protected Health Information filter (Philter): accurately
and securely de-identifying free-text clinical notes. npj
Digit. Med. 3, 57. doi.org:10.1038/s41746-020-0258-y
Official Website of The Office of the National Coordinator
for Health Information Technology (ONC). (2019,
September 10). What is an electronic health record
(EHR)? https://www.healthit.gov/faq/what-electronic-
health-record-ehr
Official Website of The Office of the National Coordinator
for Health Information Technology (ONC). (2019, June
4). Health IT Standards. https://www.healthit.gov/
topic/standards-technology/health-it-standards
openEHR. (n.d.). What is openEHR? Retrieved on
September 2, 2020, from https://www.openehr.org/
about/what_is_openehr