with T. K. Srikanth, IIITB; Sindhu Mathai of Azim
Premji University; Vidhya Y. and Supriya Dey of Vi-
sion Empower; Neha Trivedi, XRCVC; Vani, Push-
paja, Kalyani, and Anjana of Braille Resource Center,
Matruchayya, that has shaped this work. The authors
are thankful for the helpful comments from anony-
mous reviewers.
REFERENCES
Al-Zaidy, R., Choudhury, S., and Giles, C. (2016). Auto-
matic summary generation for scientific data charts.
In WS-16-01, volume WS-16-01 - WS-16-15, pages
658–663, United States. AI Access Foundation.
Al-Zaidy, R. A. and Giles, C. L. (2015). Automatic extrac-
tion of data from bar charts. In Proceedings of the
8th International Conference on Knowledge Capture,
K-CAP 2015, pages 1–4, New York, NY, USA. Asso-
ciation for Computing Machinery.
Baek, J., Kim, G., Lee, J., Park, S., Han, D., Yun, S.,
Oh, S. J., and Lee, H. (2019). What is wrong with
scene text recognition model comparisons? dataset
and model analysis. volume abs/1904.01906, pages
4714–4722.
Baek, Y., Lee, B., Han, D., Yun, S., and Lee, H. (2019).
Character region awareness for text detection. In 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 9357–9366.
Battle, L., Duan, P., Miranda, Z., Mukusheva, D., Chang,
R., and Stonebraker, M. (2018). Beagle: Automated
extraction and interpretation of visualizations from the
web. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, CHI ’18, page
1–8, New York, NY, USA. Association for Computing
Machinery.
Burns, R., Carberry, S., and Elzer, S. (2009). Modeling Rel-
ative Task Effort for Grouped Bar Charts. In Proceed-
ings of the Annual Meeting of the Cognitive Science
Society, volume 31.
Chen, T. (2015). Going deeper with convolutional neural
network for intelligent transportation. PhD thesis, Ph.
D. dissertation, Dept. Elect. Comput. Eng., Worcester
Polytech. Institute.
Choi, J., Jung, S., Park, D. G., Choo, J., and Elmqvist, N.
(2019). Visualizing for the non-visual: Enabling the
visually impaired to use visualization. In Computer
Graphics Forum, volume 38, pages 249–260. Wiley
Online Library.
Demir, S., Carberry, S., and McCoy, K. F. (2008). Generat-
ing textual summaries of bar charts. In Proceedings of
the Fifth International Natural Language Generation
Conference, INLG ’08, page 7–15, USA. Association
for Computational Linguistics.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. (2009). ImageNet: A large-scale hierarchical im-
age database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. IEEE.
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996).
A density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of
the Second International Conference on Knowledge
Discovery and Data Mining, KDD’96, page 226–231.
AAAI Press.
Ferres, L., Verkhogliad, P., Lindgaard, G., Boucher, L.,
Chretien, A., and Lachance, M. (2007). Improving
accessibility to statistical graphs: The igraph-lite sys-
tem. In Proceedings of the 9th International ACM
SIGACCESS Conference on Computers and Accessi-
bility, Assets ’07, page 67–74, New York, NY, USA.
Association for Computing Machinery.
Fritsch, J., Kuehnl, T., and Geiger, A. (2013). A new per-
formance measure and evaluation benchmark for road
detection algorithms. In 16th International IEEE Con-
ference on Intelligent Transportation Systems (ITSC
2013), pages 1693–1700. IEEE.
Jung, D., Kim, W., Song, H., Hwang, J.-i., Lee, B., Kim,
B., and Seo, J. (2017). Chartsense: Interactive data
extraction from chart images. In Proceedings of the
2017 CHI Conference on Human Factors in Comput-
ing Systems, CHI ’17, page 6706–6717, New York,
NY, USA. Association for Computing Machinery.
Medioni, G., Tang, C.-K., and Lee, M.-S. (2000). Ten-
sor Voting: Theory and Applications. Proceedings of
RFIA, Paris, France, 3.
Methani, N., Ganguly, P., Khapra, M. M., and Kumar, P.
(2020). PlotQA: Reasoning over Scientific Plots. In
The IEEE Winter Conference on Applications of Com-
puter Vision, pages 1516–1525.
Moreno, R., Pizarro, L., Burgeth, B., Weickert, J., Gar-
cia, M. A., and Puig, D. (2012). Adaptation of ten-
sor voting to image structure estimation. In Laidlaw,
D. H. and Vilanova, A., editors, New Developments
in the Visualization and Processing of Tensor Fields,
pages 29–50, Berlin, Heidelberg. Springer Berlin Hei-
delberg.
Poco, J. and Heer, J. (2017). Reverse-Engineering Visu-
alizations: Recovering Visual Encodings from Chart
Images. In Computer Graphics Forum, volume 36,
pages 353–363. Wiley Online Library.
Rohatgi, A. (2011). Webplotdigitizer.
Savva, M., Kong, N., Chhajta, A., Fei-Fei, L., Agrawala,
M., and Heer, J. (2011). Revision: Automated clas-
sification, analysis and redesign of chart images. In
Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology, UIST ’11,
page 393–402, New York, NY, USA. Association for
Computing Machinery.
Siegel, N., Horvitz, Z., Levin, R., Divvala, S., and Farhadi,
A. (2016). Figureseer: Parsing result-figures in re-
search papers. In Leibe, B., Matas, J., Sebe, N.,
and Welling, M., editors, Computer Vision – ECCV
2016, pages 664–680, Cham. Springer International
Publishing.
Simonyan, K. and Zisserman, A. (2015). Very Deep Con-
volutional Networks for Large-Scale Image Recogni-
tion. In Bengio, Y. and LeCun, Y., editors, 3rd In-
ternational Conference on Learning Representations,
BarChartAnalyzer: Digitizing Images of Bar Charts
27