data over the years. Moreover, normalisation of the
different quality images on spectrum and contrast
allows for creating segmented categorical maps of
different periods. It enables to analyse and interpret
the results on different levels, where both generalised
and granular data is available. The generalised results
could be used to detect exceptional patterns by using
a contour or heat map, while for the granular level
analysis, it is possible to review a map on a specific
location, so that the experts could better understand
and interpret the generalised results.
ACKNOWLEDGEMENT
This research was supported by the Research,
Development and Innovation Fund of Kaunas
University of Technology (project grant No.
PP91L/19).
REFERENCES
Al-Ruzouq, R., Hamad, K., Shanableh, A., & Khalil, M.
(2017). Infrastructure growth assessment of urban areas
based on multi-temporal satellite images and linear
features. Annals of GIS, 23(3), 183–201.
https://doi.org/10.1080/19475683.2017.1325935
Albert, A., Kaur, J., & Gonzalez, M. C. (2017). Using
convolutional networks and satellite imagery to identify
patterns in urban environments at a large scale.
Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
Part F1296, 1357–1366. https://doi.org/10.1145/
3097983.3098070
Celik, T. (2009). Unsupervised change detection in satellite
images using principal component analysis and κ-
means clustering. IEEE Geoscience and Remote
Sensing Letters, 6(4), 772–776. https://doi.org/10.1109/
LGRS.2009.2025059
Corbane, C., Syrris, V., Sabo, F., Pesaresi, M., Soille, P., &
Kemper, T. (2020). Convolutional Neural Networks for
Global Human Settlements Mapping from Sentinel-2
Satellite Imagery. ArXiv.
de Jong, K. L., & Sergeevna Bosman, A. (2019).
Unsupervised Change Detection in Satellite Images
Using Convolutional Neural Networks. 2019
International Joint Conference on Neural Networks
(IJCNN), July, 1–8. https://doi.org/10.1109/
ijcnn.2019.8851762
Donaldson, D., & Storeygard, A. (2016). The view from
above: Applications of satellite data in economics.
Journal of Economic Perspectives, 30(4), 171–198.
https://doi.org/10.1257/jep.30.4.171
Dornaika, F., Moujahid, A., El Merabet, Y., & Ruichek, Y.
(2016). Building detection from orthophotos using a
machine learning approach: An empirical study on
image segmentation and descriptors. Expert Systems
with Applications, 58, 130–142. https://doi.org/
10.1016/j.eswa.2016.03.024
Goyette, N., Jodoin, P.-M., Porikli, F., Konrad, J., &
Ishwar, P. (2012). A new change detection benchmark
dataset. IEEE Workshop on Change Detection
(CDW’12) at CVPR’12, 1–8.
Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B.,
& Ermon, S. (2016). Combining satellite imagery and
machine learning to predict poverty. Science,
353(6301), 790–794. https://doi.org/10.1126/
science.aaf7894
Kanagamalliga, S., & Vasuki, S. (2018). Contour-based
object tracking in video scenes through optical flow and
gabor features. Optik, 157, 787–797. https://doi.org/
10.1016/j.ijleo.2017.11.181
Krupinski, M., Lewiński, S., & Malinowski, R. (2019). One
class SVM for building detection on Sentinel-2 images.
1117635(November 2019), 6. https://doi.org/10.1117/
12.2535547
Längkvist, M., Kiselev, A., Alirezaie, M., & Loutfi, A.
(2016). Classification and segmentation of satellite
orthoimagery using convolutional neural networks.
Remote Sensing, 8(4). https://doi.org/10.3390/
rs8040329
Liu, Y., Han, Z., Chen, C., DIng, L., & Liu, Y. (2020).
Eagle-Eyed Multitask CNNs for Aerial Image Retrieval
and Scene Classification. IEEE Transactions on
Geoscience and Remote Sensing, 58(9), 6699–6721.
https://doi.org/10.1109/TGRS.2020.2979011
Marmanis, D., Galliani, S., Schindler, K., Zurich, E.,
Marmanis, D., Wegner, J. D., Galliani, S., Schindler,
K., Datcu, M., & Stilla, U. (2016). Semantic
Segmentation Of Aerial Images With An Ensemble Of
CNNS 3D reconstruction and monitoring of
construction sites using LiDAR and photogrammetric
point clouds View project Earth Observation Image
Librarian (EOLib) View project SEMANTIC
SEGMENTATION O. III(July), 12–19. https://doi.org/
10.5194/isprsannals-III-3-473-2016
Nahhas, F. H., Shafri, H. Z. M., Sameen, M. I., Pradhan, B.,
& Mansor, S. (2018). Deep Learning Approach for
Building Detection Using LiDAR – Orthophoto Fusion.
2018.
Shermeyer, J., & Van Etten, A. (2019). The Effects of
Super-Resolution on Object Detection Performance in
Satellite Imagery. http://arxiv.org/abs/1812.04098
Suraj, P. K., Gupta, A., Sharma, M., Paul, S. B., &
Banerjee, S. (2018). On monitoring development
indicators using high resolution satellite images. 1–36.
http://arxiv.org/abs/1712.02282
Vakalopoulou, M., Karantzalos, K., Komodakis, N., &
Paragios, N. (2015). Building detection in very high
resolution multispectral data with deep learning
features. International Geoscience and Remote Sensing
Symposium (IGARSS), 2015-Novem, 1873–1876.
https://doi.org/10.1109/IGARSS.2015.7326158
Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D.
(2010). Detecting trend and seasonal changes in
satellite image time series. Remote Sensing of