REFERENCES
Assunc¸
˜
ao, M. D., Calheiros, R. N., Bianchi, S., Netto,
M. A., and Buyya, R. (2015). Big data computing
and clouds: Trends and future directions. Journal of
Parallel and Distributed Computing, 79:3–15.
Baars, H. and Ereth, J. (2016). From data warehouses to
analytical atoms-the internet of things as a centrifugal
force in business intelligence and analytics. In 24th
European Conference on Information Systems (ECIS),
Istanbul, Turkey, page ResearchPaper3.
Chen, H., Chiang, R. H., and Storey, V. C. (2012). Business
intelligence and analytics: from big data to big impact.
MIS quarterly, pages 1165–1188.
Chen, M., Mao, S., and Liu, Y. (2014). Big data: A survey.
Mobile networks and applications, 19(2):171–209.
Diamantini, C., Giudice, P. L., Musarella, L., Potena, D.,
Storti, E., and Ursino, D. (2018). A New Meta-
data Model to Uniformly Handle Heterogeneous Data
Lake Sources. In European Conference on Advances
in Databases and Information Systems (ADBIS 2018),
Budapest, Hungary, pages 165–177.
Dixon, J. (2010). Pentaho, Hadoop, and Data Lakes.
https://jamesdixon.wordpress.com/2010/10/14/pentaho-
hadoop-and-data-lakes/.
Gandomi, A. and Haider, M. (2015). Beyond the hype: Big
data concepts, methods, and analytics. International
Journal of Information Management, 35(2):137–144.
Gr
¨
oger, C. (2018). Building an industry 4.0 analytics plat-
form. Datenbank-Spektrum, 18(1):5–14.
Hai, R., Geisler, S., and Quix, C. (2016). Constance: An
Intelligent Data Lake System. In International Con-
ference on Management of Data (SIGMOD 2016),
San Francisco, CA, USA, ACM Digital Library, pages
2097–2100.
Halevy, A. Y., Korn, F., Noy, N. F., Olston, C., Polyzotis, N.,
Roy, S., and Whang, S. E. (2016). Goods: Organizing
Google’s Datasets. In Proceedings of the 2016 Inter-
national Conference on Management of Data (SIG-
MOD 2016), San Francisco, CA, USA, pages 795–
806.
Heintz, B. and Lee, D. (2019). Production-
izing Machine Learning with Delta Lake.
https://databricks.com/fr/blog/2019/08/14/production
izing-machine-learning-with-delta-lake.html.
Hellerstein, J. M., Sreekanti, V., Gonzalez, J. E., Dalton,
J., Dey, A., Nag, S., Ramachandran, K., Arora, S.,
Bhattacharyya, A., Das, S., Donsky, M., Fierro, G.,
She, C., Steinbach, C., Subramanian, V., and Sun, E.
(2017). Ground: A Data Context Service. In Bien-
nial Conference on Innovative Data Systems Research
(CIDR 2017), Chaminade, CA, USA.
Inmon, B. (2016). Data Lake Architecture: Designing the
Data Lake and avoiding the garbage dump. Technics
Publications.
Maccioni, A. and Torlone, R. (2017). Crossing the finish
line faster when paddling the data lake with KAYAK.
VLDB Endowment, 10(12):1853–1856.
Madera, C. and Laurent, A. (2016). The next informa-
tion architecture evolution: the data lake wave. In
International Conference on Management of Digital
EcoSystems (MEDES 2016), Biarritz, France, pages
174–180.
Miloslavskaya, N. and Tolstoy, A. (2016). Big Data, Fast
Data and Data Lake Concepts. In International Con-
ference on Biologically Inspired Cognitive Architec-
tures (BICA 2016), NY, USA, volume 88 of Procedia
Computer Science, pages 1–6.
Mortenson, M. J., Doherty, N. F., and Robinson, S. (2015).
Operational research from taylorism to terabytes: A
research agenda for the analytics age. European Jour-
nal of Operational Research, 241(3):583–595.
Ravat, F. and Zhao, Y. (2019). Metadata management for
data lakes. In European Conference on Advances in
Databases and Information Systems (ADBIS 2019),
Bled, Slovenia, pages 37–44. Springer.
Sawadogo, P., Kibata, T., and Darmont, J. (2019a). Meta-
data management for textual documents in data lakes.
arXiv preprint arXiv:1905.04037.
Sawadogo, P. N., Scholly, E., Favre, C., Ferey, E., Loud-
cher, S., and Darmont, J. (2019b). Metadata sys-
tems for data lakes: models and features. In Inter-
national Workshop on BI and Big Data Applications
(BBIGAP@ADBIS 2019), Bled, Slovenia, pages 440–
451. Springer.
Scholly, E. (2019). Business intelligence & analytics ap-
plied to public housing. In ADBIS Doctoral Consor-
tium (DC@ADBIS 2019), Bled, Slovenia, pages 552–
557. Springer.
Scholly, E., Sawadogo, P., Liu, P., Espinosa-Oviedo, J. A.,
Favre, C., Loudcher, S., Darmont, J., and No
ˆ
us, C.
(2021). Coining goldmedal: A new contribution to
data lake generic metadata modeling. In 23rd Interna-
tional Workshop on Design, Optimization, Languages
and Analytical Processing of Big Data (DOLAP@
EDBT 2021).
Watson, H. J. and Wixom, B. H. (2007). The current state
of business intelligence. Computer, 40(9):96–99.
ICEIS 2021 - 23rd International Conference on Enterprise Information Systems
50