ACKNOWLEDGEMENTS
Funding is from : i) the ILP-Task Force II (Leader A.
Tibaldi); ii) the MIUR project ACPR15T4_00098–
Argo3D (http://argo3d.unimib.it/); iii) the Virtual
Diver project (https://www.virtualdiver.gr/); iv)
NEANIAS project (https://www.neanias.eu/). Special
thanks to Captain Giorgos Renieris of the Santorini
Boatmen Union. Agisoft Metashape is acknowledged
for photogrammetric data processing. Finally, this
paper is an outcome of GeoVires lab
(https://geovires.unimib.it).
REFERENCES
Bliakharskii, D. P., & Florinsky, I. V. (2018, March).
Unmanned aerial survey for modelling glacier
topography in Antarctica: first results. In GISTAM (pp.
319-326).
Bonali, F. L., Tibaldi, A., Corti, N., Fallati, L., & Russo, E.
(2020). Reconstruction of Late Pleistocene-Holocene
Deformation through Massive Data Collection at Krafla
Rift (NE Iceland) Owing to Drone-Based Structure-
from-Motion Photogrammetry. Applied Sciences,
10(19), 6759.
Browning, J., Drymoni, K., Gudmundsson, A., (2015).
Forecasting magma-chamber rupture at Santorini
volcano, Greece. Scientific reports, 5, 15785.
Burns, J. H. R., & Delparte, D. (2017). Comparison of
commercial structure-from-motion photogrammety
software used for underwater three-dimensional
modeling of coral reef environments. The International
Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences, 42, 127.
Druitt, T.H., Edwards, L., Mellors, R.M., Pyle, D.M.,
Sparks, R.S.J., Lanphere, M., Davis, M., Barriero, B.,
(1999). Santorini Volcano. Geological Society Memoir
No. 19, 165.
Druitt, T. H., (2014). New insights into the initiation and
venting of the Bronze-Age eruption of Santorini
(Greece), from component analysis, Bull. Volcanol.,
76, 794
Drymoni, K., Browning, J., Gudmundsson, A., (2020).
Dyke-arrest scenarios in extensional regimes: Insights
from field observations and numerical models,
Santorini, Greece, Journal of Volcanology and
Geothermal Research, 396, 106854
Drymoni, K., (2020). Dyke propagation paths: The
movement of magma from the source to the surface,
PhD thesis, Royal Holloway University of London, UK
Fallati, L., Saponari, L., Savini, A., Marchese, F., Corselli,
C., & Galli, P. (2020). Multi-Temporal UAV Data and
object-based image analysis (OBIA) for estimation of
substrate changes in a post-bleaching scenario on a
maldivian reef. Remote Sensing, 12(13), 2093.
Friedrich, W., Kromer, B., Friedrich, M., Heinemeier, J.,
Pfeiffer, T., Talamo, S., (2006). Santorini eruption
radiocarbon dated to 1627–1600 Bc., Science, 312, 548
Gudmundsson, A., 2020. Volcanotectonics. Cambridge
University Press, Cambridge.
Hooft, E.E.E., P. Nomikou, D.R. Toomey, D. Lampridou,
C. Getz, M. Christopoulou, D. O’Hara, G.M. Arnoux,
M. Bodmer, M. Gray, B.A. Heath, and B.P. Vander
Beek, (2017). Backarc tectonism, volcanism, and mass
wasting shape seafloor morphology in the Santorini-
Christiana-Amorgos region of the Hellenic Volcanic
Arc, Tectonophysics, 712-713, 396-414.
James, M. R., Robson, S., & Smith, M. W. (2017). 3‐D
uncertainty‐based topographic change detection with
structure‐ from‐motion photogrammetry: precision
maps for ground control and directly georeferenced
surveys. Earth Surface Processes and Landforms,
42(12), 1769-1788.
Le Pichon, X., Angelier, J., (1979). The Hellenic arc and
trench system: A key to the neotectonic evolution of the
eastern Mediterranean area. Tectonophysics, 60, 1-42.
Pasquaré Mariotto, F., Bonali, F. L., & Venturini, C.
(2020). Iceland, an open-air museum for geoheritage
and Earth science communication purposes. Resources,
9(2), 14.
Parks, M.M., Biggs, J., England, P., Mather, T.A.,
Nomikou, P., Palamartchouk, K., Papanikolaou, X.,
Paradissis, D., Parsons, B., Pyle D.M., (2012).
Evolution of Santorini Volcano dominated by episodic
and rapid fluxes of melt from depth, Nat. Geosci., 5,
749-754.
Pepe, M., & Prezioso, G. (2016, April). Two Approaches
for Dense DSM Generation from Aerial Digital Oblique
Camera System. In GISTAM (pp. 63-70).
Rizzo, A.L., Barberi, F., Carapezza, M.L., Di Piazza, A.,
Francalanci, L., Sortino, F., D’Alessandro, W., (2015).
New mafic magma refilling a quiescent volcano:
Evidence from He–Ne–Ar isotopes during the 2011–
2012 unrest at Santorini, Greece. Geochemistry,
Geophysics, Geosystems, 16, 798- 814.
Scott, C., Bunds, M., Shirzaei, M., & Toke, N. (2020).
Creep along the Central San Andreas Fault from
Surface Fractures, Topographic Differencing, and
InSAR. Journal of Geophysical Research: Solid Earth,
125(10), e2020JB019762.
Tibaldi, A., & Bonali, F. L. (2017). Intra-arc and back-arc
volcano-tectonics: Magma pathways at Holocene
Alaska-Aleutian volcanoes. Earth-Science Reviews,
167, 1-26.
Tibaldi, A., Bonali, F. L., Vitello, F., Delage, E., Nomikou,
P., Antoniou, V., & Whitworth, M. (2020). Real world–
based immersive Virtual Reality for research, teaching
and communication in volcanology. Bulletin of
Volcanology, 82(5), 1-12.
Xu, X., Aiken, C.L., Nielsen, K.C., (1999). Real time and
the virtual outcrop improve geological field mapping.
Eos, Transactions American Geophysical Union,
80(29), 317-324.
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M.
J., & Reynolds, J. M. (2012). ‘Structure-from-
Motion’photogrammetry: A low-cost, effective tool for
geoscience applications. Geomorphology, 179, 300-314.